Комета
Содержание:
- Версии о происхождении кометы Галлея
- Бросить якорь на ядро
- Внешние ссылки [ править ]
- Исследования с помощью космических аппаратов
- «Переживать не стоит»
- Изучение комет
- Что такое кометы?
- Механизм формирования[править | править код]
- Особенности номенклатуры
- Что собой представляют кометы?
- Почему у кометы есть хвост?
- Являются ли хвосты комет на самом деле ядовитыми?
- Анализ поведения кометы Галлея
- Что произойдет, если комета столкнется с Землей. Заблуждения о кометах
- Заблуждения о кометах.
- Кометы и Солнце
- Куда направлен хвост кометы?
- Земля проходит через хвост кометы
- Земля проходит через хвост кометы
- Чем отличается метеорит от кометы
Версии о происхождении кометы Галлея
В соответствии с принятой классификацией наша самая популярная космическая гостья является короткопериодической кометой. Для этих небесных тел характерным является малое наклонение орбиты по отношению к оси эклиптики (всего 10 градусов) и небольшой период обращения. Как правило, такие кометы относятся к семейству комет Юпитера. На фоне этих космических объектов комета Галлея, как и другие однотипные космические объекты, сильно выделяется своими астрофизическими параметрами. В результате такие объекты были отнесены к отдельному, галлеевскому типу. На данный момент ученые могли обнаружить только 54 кометы однотипные с кометой Галлея, которые так или иначе посещают околоземное пространство на протяжении всего существования Солнечной системы.
Предварительные расчеты показали, что небесное тело, которое каждые 76 лет прилетает к нам, существует более 16000 лет. По крайней мере, комета движется по нынешней орбите достаточно долгое время. Утверждать, была ли такой же орбита 100-200 тыс. лет, не представляется возможным. На летящую комету постоянно оказывают влияние не только силы гравитации. В силу своей природы этот объект сильно подвержен влиянию механическому воздействию, которое в свою очередь вызывает реактивный эффект. К примеру, когда комета находится в афелии, солнечные лучи нагревают ее поверхность. В процессе нагревания поверхности ядра возникают сублимирующиеся потоки газа, действующие подобно ракетным двигателям. В этот момент происходят колебания орбиты кометы, влияющие на отклонения в периоде обращения. Эти отклонения хорошо видны уже в перигелии и могут составлять 3-4 дня.
Советские автоматические космические корабли и аппараты Европейского космического агентства во время своего путешествия к комете Галлея в 1986 году едва не промахнулись. В земных условиях оказалось невозможным предугадать и просчитать возможные отклонения в периоде обращения кометы, вызвавшие колебания небесного тела на орбите. Этот факт подтвердил версию ученых, что период обращения кометы Галлея может меняться в будущем. В этом аспекте становятся интересными состав и структура комет. Предварительная версия о том, что это огромные глыбы космического льда, опровергаются длительным существованием комет, которые не исчезли и не испарились в космическом пространстве.
Бросить якорь на ядро
Наиболее впечатляющим исследованием обещает стать миссия Европейского космического агентства к комете Чурюмова— Герасименко, которую открыли в 1969 году сотрудник Киевского университета Клим Иванович Чурюмов и аспирантка Светлана Ивановна Герасименко, проводя наблюдения на обсерватории Астрофизического института имени В. Фесенкова в горах близ Алма-Аты. Этот совершенно новый этап в изучении комет начался в 2004 году запуском автоматической станции Rosetta. Предполагается также получить сведения о двух астероидах, вблизи которых пройдет траектория полета. До сих пор космические станции находились около комет довольно короткое время. Полученные ими сведения можно сравнить с одним кадром из жизни этого космического объекта. Для создания подробной картины, своего рода кинофильма с кометой в главной роли, необходимо пробыть вблизи нее длительный промежуток времени. Планируется, что станция Rosetta впервые станет искусственным спутником кометы и будет около двух лет перемещаться вместе с ней, фиксируя сведения о том, как по мере приближения к Солнцу нагревается поверхность кометного ядра, выбрасывая вещество, из которого возникнет и вырастет газово-пылевой хвост.
Пожалуй, даже в самых смелых мечтах открыватели кометы не могли представить, что через 35 лет к «их» объекту будет направлена космическая станция. Тем не менее такое случилось, и в марте 2004 года профессор Киевского университета Чурюмов и научный сотрудник Института астрофизики Академии наук Таджикистана Герасименко оказались в Южной Америке на космодроме Куру (Французская Гвиана) в качестве почетных гостей при запуске станции Rosetta.
Целых 10 лет потребуется космическому аппарату, чтобы выйти в точку встречи с кометой. За это время его траектория несколько раз изменится под влиянием гравитационного воздействия Земли и Марса. Сначала в марте 2005 года Rosetta пройдет вблизи Земли, затем в феврале 2007-го — около Марса, в ноябре того же года и в ноябре 2009-го — еще дважды недалеко от Земли. После каждого такого сближения путь станции будет становиться иным, отклоняясь именно в том заранее рассчитанном направлении, которое должно привести ее к встрече с кометой в мае 2014 года. Станция подойдет к ней вдалеке от Солнца — в холодной области, где у кометы еще нет хвоста. Затем произойдет самое необычное событие во всем полете: от станции отделится небольшой посадочный модуль Philae и впервые совершит посадку на кометное ядро. Этот модуль назван по имени острова Филэ на Первом пороге Нила, где в 1815 году был обнаружен красный гранитный обелиск с надписью на двух языках — греческом и древнеегипетском, который, как и Розеттский камень, помог в расшифровке знаковой письменности. Процесс посадки на комету будет походить, скорее, на стыковку космических аппаратов, а не на приземление. Скорость посадочного модуля уменьшится до 0,7 м/с (2,5 км/ч), что меньше скорости пешехода, а по космическим меркам она совсем ничтожная. Ведь сила тяжести на кометном ядре, диаметр которого равен 5 км, совсем небольшая, и аппарат может просто отскочить от поверхности назад в космос, если будет двигаться слишком быстро. После соприкосновения с кометой посадочный модуль должен прикрепиться «сухопутным якорем», напоминающим гарпун. В дальнейшем «якорь» удержит его на комете, когда тот начнет бурение ее поверхности миниатюрной буровой установкой. Полученный образец вещества будет проанализирован мини-лабораторией, находящейся внутри Philae. Видеокамера, установленная снаружи, покажет ландшафт кометного ядра и то, что происходит на нем при выбросах газовых струй из недр. Внутреннее строение ядра будет «просвечено» с помощью радио- и звуковых волн. Столь подробная информация поступит впервые и даст объяснение тому, как устроено и из чего состоит кометное ядро. Можно ли считать это необычное образование древнейшим веществом, «законсервированным» материалом времен формирования Солнечной системы, как это сейчас предполагается, или же кометы представляют собой что-то иное, до чего не дошла не только наука, но даже фантазия.
Внешние ссылки [ править ]
Исследования с помощью космических аппаратов
Комета | Посещение | Примечания | |||
---|---|---|---|---|---|
Название | Год открытия | Космический аппарат | Дата | Расстояние сближения (км) | |
21P/Джакобини — Циннера | 1900 | «Международный исследователь комет» | 1985 | 7800 | Пролёт |
Комета Галлея | Появления известны с древних времён (не позже 240 г. до н. э.); периодичность появления обнаружена в 1705 г. | «Вега-1» | 1986 | 8889 | Сближение |
Комета Галлея | «Вега-2» | 1986 | 8030 | Сближение | |
Комета Галлея | «Суйсэй» | 1986 | 151000 | Сближение | |
Комета Галлея | «Джотто» | 1986 | 596 | Сближение | |
26P/Григга — Скьеллерупа | 1902 | «Джотто» | 1992 | 200 | Сближение |
19P/Борелли | 1904 | Deep Space 1 | 2001 | ? | Сближение |
81P/Вильда | 1978 | «Стардаст» | 2004 | 240 | Сближение; возврат образцов на Землю |
9P/Темпеля | 1867 | «Дип Импакт» | 2005 | Сближение; столкновение специального модуля (ударника) с ядром | |
103P/Хартли | 1986 | «Дип Импакт» | 2010 | 700 | Сближение |
9P/Темпеля | 1867 | «Стардаст» | 2011 | 181 | Сближение |
67P/Чурюмова — Герасименко | 1969 | «Розетта» | 2014 | Выход на орбиту в качестве квазиспутника; первая в истории мягкая посадка на комету (модуль «Филы») |
Планируемые исследования
Наиболее интересным исследованием обещает стать миссия «Розетта» Европейского космического агентства к комете Чурюмова — Герасименко, открытой в 1969 году Климом Чурюмовым и Светланой Герасименко. Автоматическая станция «Розетта» была запущена в 2004 году и достигла кометы в ноябре 2014 года, в период, когда она была далека от Солнца, и её активность была невысока. «Розетта» наблюдала развитие активности кометы на протяжении двух лет, сопровождая её в качестве квазиспутника на расстояниях 3—300 км от ядра. Впервые в истории исследования комет на ядро опустился посадочный модуль («Филы»), который, помимо прочих задач, должен был взять образцы грунта и исследовать их прямо на борту, а также передать на Землю фотографии газовых струй, вырывающихся из ядра кометы (научная программа модуля была в основном выполнена, однако именно эти задачи выполнить не удалось).
«Переживать не стоит»
Изучение комет
Люди всегда проявляли особый интерес к кометам. Их необычный вид и неожиданность появления служили в течение многих веков источником всевозможных суеверий. Древние связывали появление в небе этих космических тел со светящимся хвостом с предстоящими бедами и наступлением тяжёлых времён.
Появление кометы Галлея в 1066 году. Фрагмент гобелена из Байё, ок. 1070 года
В эпоху Возрождения в немалой степени благодаря Тихо Браге кометы получили статус небесных тел. В 1814 году Лагранж выдвинул гипотезу, что кометы произошли в результате извержений и взрывов на планетах, в XX веке эту гипотезу развивал С. К. Всехсвятский. Лаплас же считал, что кометы происходят из межзвездного пространства.
Исчерпывающее представление о кометах астрономы получили благодаря успешным «визитам» в 1986 г. к комете Галлея космических аппаратов «Вега-1» и «Вега-2» и европейского «Джотто». Многочисленные приборы, установленные на этих аппаратах, передали на Землю изображения ядра кометы и разнообразные сведения о её оболочке. Оказалось, что ядро кометы Галлея состоит в основном из обычного льда (с небольшими включениями углекислых и метановых льдов), а также пылевых частиц. Именно они образуют оболочку кометы, а с приближением её к Солнцу часть из них — под давлением солнечных лучей и солнечного ветра — переходит в хвост.
Размеры ядра кометы Галлея, как правильно рассчитали учёные, равны нескольким километрам: 14 — в длину, 7,5 — в поперечном направлении.
Ядро кометы Галлея имеет неправильную форму и вращается вокруг оси, которая, как предполагал ещё немецкий астроном Фридрих Бессель (1784—1846), почти перпендикулярна плоскости орбиты кометы. Период вращения оказался равен 53 часам — что опять-таки хорошо согласовалось с вычислениями астрономов.
В 2005 космический аппарат НАСА «Дип Импакт» сбросил на комету Темпеля 1 зонд и передал изображения её поверхности.
В России
Сведения о кометах появляются уже в древнерусском летописании в Повести временных лет
Летописцы обращали на появление комет особое внимание, поскольку их считали предвестницами несчастий — войны, мора и т. д. Однако какого-то особого названия для комет в языке древней Руси не существовало, поскольку их считали движущимися хвостатыми звездами
В 1066 году, когда описание кометы впервые попало на страницы летописей, астрономический объект именовался «звезда велика; звезда привелика, луце имуши акы кровавы, въсходящи с вечера по заходе солнецьном; звезда образ копииныи; звезда… испущающе луча, еюже прозываху блистаньницю».
Слово «комета» проникает в русский язык вместе с переводами европейских сочинений о кометах. Его наиболее раннее упоминание встречается в сборнике «Бисер златый» («Луцидариус», лат. Lucidarius), представляющем собой нечто вроде энциклопедии, рассказывающей о мироустройстве. «Луцидариус» был переведен с немецкого языка в начале XVI века. Поскольку слово было новым для русских читателей, переводчик был вынужден пояснять его привычным наименованием «звезда»: «звезда комита дает блистание от себе яко луч». Однако прочно в русский язык понятие «комета» вошло в середине 1660-х годов, когда в небе над Европой действительно появлялись кометы. Это событие вызвало массовый интерес к явлению. Из переводных сочинений русский читатель узнавал, что кометы совсем не похожи на звезды. Отношение же к появлению небесных тел как к знамениям сохранялось как в России, так и в Европе вплоть до начала XVIII века, когда появились первые сочинения, отрицающие «чудесную» природу комет.
Освоение европейских научных знаний о кометах позволило русским учёным внести собственный вклад в их изучение. Во второй половине XIX века астроном Фёдор Бредихин (1831—1904) построил полную теорию природы комет, происхождения кометных хвостов и причудливого разнообразия их форм.
Что такое кометы?
Как и все в науке, кометы издавна ассоциировались со знаками Бога. В раннем возрасте кометы могли означать хорошие предзнаменования для некоторых королей, но плохой знак для других! В 1910 году люди в Чикаго закрыли свои окна в ответ на слух, что хвост кометы может ввести яд в атмосферу Земли. Однако наше нынешнее знание отбрасывает такие вымышленные идеи!
Кометы — это небесные тела, которые в основном состоят из льда. Обычное название, которое используют исследователи, — «снежные комья грязи». Они «снежные», потому что состоят изо льда, в то время как «грязный комок» указывает на присутствие большого количества пыли. Известно, что большинство этих комет вращаются вокруг Солнца, но они, как правило, обитают в отдаленной области Солнечной системы, называемой Облаком Оорта.
Положение облака Оорта
Строение кометы можно разделить на две части: ядро и кома . Ядро — это темная часть кометы, которая состоит из скалистого ядра и имеет на поверхности пыль, лед и различные газы. Эти газы чаще всего включают окись углерода, аммиак, двуокись углерода и метан. Блестящая часть, которая вылетает из ядра, называется комой. Слово происходит от латинского Comida, что означает «волосатый».
Механизм формирования[править | править код]
При приближении кометы к Солнцу с поверхности её ядра начинают сублимироваться летучие вещества с малой температурой кипения, такие как вода, моноксид и диоксид углерода, метан, азот и, возможно, другие замёрзшие газы. Этот процесс приводит к образованию комы, которая может в поперечнике достигать 100 000 км. Испарение этого грязного льда высвобождает пылевые частицы, которые относятся газом от ядра. Молекулы газов в коме поглощают солнечный свет и переизлучают его затем на разных длинах волн (это явление называется флуоресценцией), а пылевые частицы рассеивают солнечный свет в различных направлениях без изменения длины волны. Оба эти процесса приводят к тому, что кома становится видимой для стороннего наблюдателя.
Действие солнечного излучения на кому приводит к образованию хвоста кометы. Но и здесь пыль и газ ведут себя по-разному. Ультрафиолетовое излучение солнца ионизирует часть молекул газов, и давление солнечного ветра, представляющего собой поток испускаемых Солнцем заряженных частиц, толкает ионы, вытягивая кому в длинный хвост, который может иметь протяжённость более чем 100 миллионов километров. Изменения в потоке солнечного ветра могут приводить к наблюдаемым быстрым изменениям вида хвоста и даже полному или частичному обрыву. Ионы разгоняются солнечным ветром до скоростей в десятки и сотни километров в секунду, много больших, чем скорость орбитального движения кометы. Поэтому их движение направлено почти точно в направлении от Солнца, как и формируемый ими хвост I типа. Ионные хвосты имеют обусловленное флуоресценцией голубоватое свечение. На кометную пыль солнечный ветер почти не действует, её выталкивает из комы давление солнечного света. Пыль разгоняется светом гораздо слабее чем ионы солнечным ветром, поэтому её движение определяется начальной орбитальной скоростью движения и ускорением под действием давления света. Пыль отстаёт от ионного хвоста и формирует изогнутые в направлении орбиты хвосты II или III типа. Хвосты II типа формируются равномерным потоком пыли с поверхности. Хвосты III типа являются результатом кратковременного выброса большого облака пыли. Вследствие разброса ускорений, приобретаемых пылинками разного размера под действием силы давления света, начальное облако также растягивается в хвост, обычно изогнутый ещё сильнее, чем хвост II типа. Пылевые хвосты светятся рассеянным красноватым светом.
Особенности номенклатуры
В течение последних нескольких столетий правила предоставления кометам названий несколько раз подвергались изменениям и уточнениям. До начала 20 века львиная доля тел получала наименования в соответствии с годом их обнаружения, яркостью, сезоном открытия (если количество обнаруженных тел было больше одного).
Однако впоследствии Галлею удалось доказать и подтвердить тот факт, что комета с разными названиями (1531, 1607 и 1682) – одна и та же. В итоге она стала именоваться находкой Галлея. После этого периодические объекты стали называть в соответствии с именами их первооткрывателей. Если же они наблюдались в рамках одного прохождения перигелия, их именовали в соответствии с годовым периодом наблюдения.
В начале 20 века такое тело, как комета, стало открываться достаточно часто. В итоге было создано соглашение о том, что кометы будут именоваться по принципу, актуальному до сих пор. В связи с этим объект наделяется собственным именем только после того, как будет обнаружен тремя наблюдателями, действующими вне зависимости друг от друга.
А Вы смотрели: Спутники планеты Уран, список названий
В последнее время открытие тел производится посредством специальных инструментов, обслуживаемых целыми группами учёных. Поскольку дать им наречение согласно именам первооткрывателей невозможно, их называют по оборудованию. Если одной группой астрономических специалистов открывалось несколько тел, к названиям добавлялся номер.
Схема образования двух типов хвостов кометы
Но сегодня, когда происходят наблюдения большого количества объектов, данная система является непрактичной. Поэтому учёные со всего мира договорились об использовании целой специальной системы. До 1994 года любая комета сначала получала временное обозначение, которое включало год открытия и строчную латинскую букву. Затем, когда происходило прохождение перигелия и надёжное установление орбиты комет, присваивалось постоянное обозначение.
Но с течением времени стали появляться всё более новые виды комет. Поэтому данная процедура стала крайне неудобной для астрономов. И в 1994 г. случилось одобрение новой системы, посредством которой обозначаются данные тела. Она действует до настоящего времени и предполагает, что в наименование входит год открытия, буква, номер открытия. Аналогичный принцип действует в отношении астероидов. Но прежде чем дать обозначение комете, специалисты ставят префикс, характеризующий её природу:
- «P» – короткопериодическое тело;
- «C» – долгопериодический объект;
- «X» – орбиты комет не вычислены;
- «D» – разрушение или потеря;
- «A» – причислены к кометам по ошибке.
Что собой представляют кометы?
Галлей установил важнейший факт — кометы являются членами Солнечной системы и обращаются вокруг Солнца.
Однако мы не можем наблюдать их постоянно, как другие малые планеты, потому что у них совсем другие орбиты — вытянутые настолько, что некоторые из них подходят к Солнцу ближе, чем Меркурий, а затем удаляются до самого пояса Койпера.
Существуют кометы, которые на один оборот затрачивают целые тысячелетия, и на памяти человечества появляются на земном небе всего однажды.
Что же собой представляют небесные тела, которые древние греки нарекли словом «комета», означающим в переводе «косматая»?
Основная масса кометы сосредоточена в небольшом плотном ядре, которое состоит из льдов воды, аммиака и метана, в которые вкраплены мелкие твердые частицы — пылинки и песчинки.
Пока комета находится в далеких от Солнца холодных областях Солнечной системы или даже за ее пределами, ядро выглядит как небольшой астероид, окруженный светлой туманной оболочкой — ее называют «кома».
С приближением к нашей звезде ядро начинает разогреваться, льды испаряются, и газы выбрасываются из ядра, прихватывая с собой твердые частицы.
У кометы образуется хвост, вернее, два хвоста — газовый и пылевой, которые под действием солнечного ветра вытягиваются в сторону, противоположную Солнцу.
Иногда газовый и пылевой хвост приобретают различные формы — частицы веществ, из которых они состоят, по-разному реагируют на солнечное излучение, а длина хвостов порой достигает 200 и более млн км.
Хвосты комет не имеют резких очертаний и практически прозрачны — сквозь них хорошо видны звезды. Газ и мельчайшие пылинки в них чрезвычайно разрежены, и наблюдать их мы можем только благодаря их собственному свечению под воздействием ультрафиолетового излучения Солнца.
Как заметил один из астрономов, по сути, это «видимое ничто».
Сегодня астрономам известны более 400 комет с коротким периодом обращения, причем 200 из них удалось наблюдать дважды и трижды.
Почему у кометы есть хвост?
В центре кометы — ледяное ядро, диаметр которого может достигать
нескольких десятков километров. Как только комета приближается к Солнцу на расстояние,
примерно равное орбите Юпитера, ядро разогревается и начинает испаряться,
выбрасывая в окружающее пространство газообразное вещество с пылинками. Хвост может
растягиваться на десятки миллионов километров.
На самом деле у кометы всегда минимум два хвоста — свет отталкивает от кометы частицы пыли, в результаты образуется пылевой хвост,
одновременно солнечный ветер воздействует на газ, рождая красиво светящийся ионный
хвост. Обычно хвост кометы «смотрит» в противоположном Солнцу направлении.
Испаряются только легкоплавкие компоненты, железные и
силикатные пылинки остаются в ядре, что замедляет разрушение комет. Как только
небесное тело удалится от Солнца, ядро остынет и хвост исчезнет. Несмотря на
это, рано или поздно любая комета с периодической орбитой «погибнет», полностью
распавшись из-за воздействия Солнца.
Однако кометы никогда не исчезнут с неба над Землей — их
ряды постоянно пополняются из гипотетического облака Оорта. Гравитационное
воздействие массивных планет — Юпитера и Сатурна — вызывает перемещение ледяных
глыб из внешнего космоса, в итоге они «присваиваются» Солнечной системой и
начинают свое путешествие вокруг светила.
Являются ли хвосты комет на самом деле ядовитыми?
Это может звучать странно, но люди думали об этом много лет! Как ни странно, если ядро кометы содержит много углерода, то хвост после ионизации может вытеснить жуткий зеленый цвет. Для людей, которые часто связывают зеленые жидкости с ядом, путаница неизбежна!
Комета Галея (официальное название 1P/Halley) — яркая короткопериодическая комета, возвращающаяся к Солнцу каждые 75—76 лет. В 1910 году земля прошла через хвост кометы Галлея, но никакого ущерба не было. Хотя хвосты комет, как известно, содержат смертельный газ, называемый цианогеном, он редко оказывает влияние. Наша планета, проходящая через этот хвост, могла принять ничтожно малую долю цианогена хвоста, которого было недостаточно для того, чтобы повлиять на Землю!
С каждым прошедшим десятилетием мы склонны накапливать больше фактов об этих мигрирующих небесных объектах, которые когда-то считались приносящими чуму или хороший урожай. Наука и астрономия, от необоснованных и необычных убеждений до понимания химического состава на поверхности этих “волосатых” грязных шаров, несомненно, прошли долгий путь!
Метки Космос
Анализ поведения кометы Галлея
Судя по наблюдениям, сделанным в последний визит кометы, небесное тело представляет собой достаточно активный космический объект. Сторона кометы, обращенная в определенный момент к Солнцу, представляет собой кипящий источник. Температура на поверхности кометы, обращенной к Солнцу, варьируется в диапазоне 30-130 градусов со знаком плюс по шкале Цельсия, тогда как на остальной части ядра кометы температура опускается до отметки ниже 100 градусов. Такое расхождение в показаниях температуры говорит в пользу того, что только малая часть ядра кометы имеет высокое альбедо и может достаточно сильно нагреваться. Остальные 70-80% ее поверхности покрыты темной субстанцией и поглощают солнечный свет.
Что касается кометной пыли, то она в основном состоит из углеродно-азотно-кислородных соединений и силикатов, которые составляют основу планет земной группы. Изучение состава водяного пара, выделяемого кометой, поставило крест на теории кометного происхождения земных океанов. Количество дейтерия и водорода в ядре кометы Галлея оказалось значительно больше, чем их количество в составе земной воды.
Предположительно длительность существования кометы Галлея оценивается в 7-10 млрд. лет. Рассчитав объем теряемого вещества во время последнего посещения нашего околоземного пространства, ученые сделали вывод, что ядро кометы уже потеряло до 80% своей первоначальной массы. Можно допускать, что сейчас наша гостья находится в преклонном возрасте и через несколько тысячелетий распадется на мелкие фрагменты. Финал этой ярчайшей жизни может произойти в пределах Солнечной системы, у нас на виду или, наоборот, пройти на задворках нашего общего дома.
Что произойдет, если комета столкнется с Землей. Заблуждения о кометах
24 октября 2013 mifvitamin 7 729 просм.
Заблуждения о кометах.
Самое большое тело в Солнечной системе — Солнце! Так? Нет, это заблуждение.
Если комета заденет Землю своим хвостом — всем нам будет плохо! Так? Нет, это заблуждение.
Хвост кометы всегда сзади нее. Так? Нет, это тоже заблуждение.
А теперь подробнее об этих заблуждениях.
Кометы и Солнце
Кометы поражают астрономов своими размерами. Так, комета 1843 года обладала хвостом, простиравшимся на 300 миллионов километров, а голова сравнительно небольшой кометы – 1908-III имела 300 тысяч километров в поперечнике, и в этой комете могли бы уместиться все планеты Солнечной системы вместе взятые. Поперечник головы кометы 1811-I равнялся миллиону километров, то есть эта комета по объему соперничала с Солнцем. Более того, комета 1729 года была больше Солнца. Именно кометы, а не Солнце, как принято считать, и являются самыми большими телами Солнечной системы.
Отметим, что, несмотря на столь колоссальные размеры, косматые светила обладают совершенно ничтожными массами. Подсчитано, что того количества воздуха, которое содержится в футбольном мяче, хватило бы для образования кометного хвоста объемом в 35 кубических километров.
Комета.
Справка.
Первое письменное упоминание о появлении кометы датируется 2296 годом до нашей эры. Древние греки видели в ярких и видимых невооружённым взглядом кометах голову с распущенными волосами. Древнегреческое «кометис» означало «волосатый», т.е. кометы – это «волосатые звезды».
Куда направлен хвост кометы?
Порой думают, что кометы тащат за собой хвост, как паровой локомотив дым в тихую погоду. Это не так. Еще в глубокой древности было замечено, что хвосты комет всегда поворачиваются в сторону, противоположную Солнцу. Римский философ Сенека писал: “Хвосты комет бегут перед солнечными лучами. А китайский летописец Мин Туань-Линь, живший в начале нашего тысячелетия, упоминает о комете, являвшейся в марте 837 года и сообщает о законе, установленном китайскими астрономами: “У кометы, которая находится к востоку от Солнца, хвост по отношению к ядру направлен к востоку, если же комета является на западе, то и хвост направлен к западу”.
Комета и ее хвост.
Хвост кометы всегда откинут в том же направлении, в котором падает тень от ее ядра. Следовательно, когда “волосатая звезда” огибает Солнце ее хвост летит рядом с ней, а когда комета удаляется от светила, то ее хвост отворачивается все круче и круче и он обгоняет голову, и комета летит хвостом вперед (получается нечто, похожее на луч света фары, освещающий страннице путь в межзвездном пространстве). И только в очень редких случаях (когда частицы, образующие хвост кометы, достаточно массивны), солнечное притяжение превышает давление солнечной радиации, и тогда хвост кометы (его называют в этом случае аномальным) направлен прямо к Солнцу.
Надо сказать, что кометы в Солнечной системе явление совсем нередкое. Астрономы отмечают, что в радиусе 1,5 светового года от Солнца пространство просто переполнено кометами. Только в одном облаке (сфере) Орта комет находится примерно 100 миллиардов. Но только немногие из них приближаются к Солнцу так, чтобы их можно было наблюдать с Земли.
Земля проходит через хвост кометы
И еще об одном заблуждении о кометах. Ошибочным является представление о том, что прохождение Земли через хвост кометы могло бы иметь какие-нибудь – плохие или хорошие – последствия для жизни на Земле, как считал, например, Конан Дойль в романе «Отравленное течение» или Г. Уэллс в книге «В дни кометы». В хвосте кометы царит гораздо более глубокий вакуум, чем этого можно было достичь в лаборатории. То количество вещества, которое он мог бы привнести в земную атмосферу, практически настолько мало, что было бы невозможно его измерить.
Комета Галлея.
Кометы и конец света
В 1910 году большая часть человечества со страхом ожидала приближения кометы Галлея. Не настанет ли конец света, когда наша планета пройдет сквозь ее хвост, длина которого 100 миллионов километров? Пивные были набиты до отказа, и их хозяева на всякий случай не наливали в долг: «Что, если должник будет не в состоянии заплатить?..»
21 мая 1910 года наша планета зацепила край хвоста кометы Галлея (по некоторым данным прошла сквозь него), но никто на Земле ничего не заметил. Более того, даже самые тщательные исследования состава воздуха не обнаружили в нем каких-либо примесей кометных веществ.
24.10.2013
Если Вам понравился данный материал, Вы можете поддержать Сайт Востоколюба финансово. Спасибо!
Земля проходит через хвост кометы
И еще об одном заблуждении о кометах. Ошибочным является представление о том, что прохождение Земли через хвост кометы могло бы иметь какие-нибудь – плохие или хорошие – последствия для жизни на Земле, как считал, например, Конан Дойль в романе «Отравленное течение» или Г. Уэллс в книге «В дни кометы». В хвосте кометы царит гораздо более глубокий вакуум, чем этого можно было достичь в лаборатории. То количество вещества, которое он мог бы привнести в земную атмосферу, практически настолько мало, что было бы невозможно его измерить.
Комета Галлея.
Кометы и конец света
В 1910 году большая часть человечества со страхом ожидала приближения кометы Галлея. Не настанет ли конец света, когда наша планета пройдет сквозь ее хвост, длина которого 100 миллионов километров? Пивные были набиты до отказа, и их хозяева на всякий случай не наливали в долг: «Что, если должник будет не в состоянии заплатить?..»
21 мая 1910 года наша планета зацепила край хвоста кометы Галлея (по некоторым данным прошла сквозь него), но никто на Земле ничего не заметил. Более того, даже самые тщательные исследования состава воздуха не обнаружили в нем каких-либо примесей кометных веществ.
24.10.2013
Если Вам понравился данный материал, Вы можете поддержать Сайт Востоколюба финансово. Спасибо!
Чем отличается метеорит от кометы
Также весьма похож на комету метеорит, но и между ними есть немало различий:
- Размер: метеориты в разы меньше комет, если комета может иметь несколько километров в диаметре, то метеориты смогут похвастаться, лишь несколькими метрами.
- Метеориты также как и большинство астероидов не имеют хвоста, этого украшения всех комет. В целом форма метеорита отличается от формы кометы.
- Состав кометы и метеорита также разный, как мы писали выше комета состоит из льда, пыли, скальных пород и органических соединений, метеорит же создан из какого-либо твердого вещества (каменные породы, метал, руда).
- И главное отличие в сущности метеорита, ведь по сути это объект, который представляет собой процесс падения небесного тела, комета же является полноправным «жителем открытого космоса», она в отличие от метеорита никуда не падает (хотя бывают и исключения), а просто летает себе в пределах Солнечной системы.