Атомные электростанции

Содержание:

[править] Развитие атомной энергетики

Двадцатый век стал временем освоения ядерной физики.

Двадцатый век стал временем освоения ядерной физики. В 1939 году ученые мира уже использовали практические и теоритические открытия в области атомной физики, что позволяло им выдвинуть программу исследований в этом направлении. В ходе многочисленных исследований ученые выявили, что можно разложить атом урана на две части, что позволяет освободить большое количество энергии и в процессе разложения выделяются нейтроны, расщепляющие другие атомы урана и вызывающие цепную ядерную реакцию. Ядерная реакция разделения урана эффективна и превосходит самые сильные химические реакции. Эти открытия произвели в научном мире настоящий фурор, ведь теперь можно было проникать в атом и овладевать его энергией.

Первое получение атомной энергии

Впервые ядерную энергию выработали в 1951 году в штате Айдахо, США. Там ученые построили ядерный реактор мощностью 100 киловатт. В 1954 году в СССР была построена первая атомная электростанция в городе Обнинске мощностью 5 МВт. Источником электроэнергии служило расщепление ядер урана. После этих событий атомная энергетика начала активно развиваться и в других странах. В 1956 году в Великобритании заработала АЭС «Калдер Холл-1» мощностью в 50 МВт. В 1957 году запустили АЭС Шиппингпорт в США мощностью 60 МВт. В 1959 году близ Авиньона во Франции открылась станция Маркуль мощностью в 37 Мвт. В СССР в 1964 году были запущены первые блоки Белоярской и Нововоронежской АЭС мощностью в 100 и 240 МВт соответственно. Итак, К 1964 г. суммарная мощность АЭС в мире выросла до 5 млн кВт. В мае 1970 года началось строительство Чернобыльской АЭС. В 1973 году, был запущен первый высокомощный блок Ленинградской АЭС мощностью в 1000 МВт. Годом ранее свою работу начала атомная электростанция в городе Шевченко (ныне Актау). Уже к 1986 г. в мире работали на АЭС 365 энергоблоков суммарной установленной мощностью 253 млн.кВт. Практически за 20 лет мощность АЭС увеличилась в 50 раз. Причинами такой высокой активности внедрения атомной энергетики в жизнь человечества стали: низкая стоимость возведения АЭС, рост потребления электроэнергии и стоимости энергоносителей, торговое эмбарго на поставки энергоносителей из арабских стран и др. Однако, 80-х годах спрос на электроэнергию стабилизировался, также как и стоимость природного топлива, а стоимость постройки АЭС, наоборот, увеличилась. К тому же серьезный удар развитию атомной энергетики был нанесен тяжелой аварией на АЭС «Три Майл Айленд» в США в 1979 г., и страшная авария на Чернобыльской АЭС в 1986 году, которые заставили людей задуматься о безопасности атомных электростанций. Во многих странах были приостановлены программы развития атомной энергетики, а в ряде стран вообще отказались от намеченных ранее планов по её развитию. Несмотря на это, к 2000 г. на АЭС, работающих в 37 странах мира, вырабатывалось 16 % мирового производства электроэнергии. Всевозможные усилия, предпринятые по улучшению безопасности АЭС, привели к тому, что доверие общества к атомной энергетике восстановилось. В условиях экологического кризиса, с которым мировое сообщество вошло в ХХI век, атомная энергетика может внести значительный вклад в обеспечение надежного электроснабжения, снижение выбросов в окружающую среду парниковых газов и загрязняющих веществ. В настоящее время активно развивают атомную энергетику страны с высокой её долей в общем объёме вырабатываемой электроэнергии, включая США, Японию, Южную Корею, Финляндию. Франция, переориентировав электроэнергетику страны на атомную и продолжая её развивать, с успехом решила энергетическую проблему на многие десятилетия. Доля АЭС в производстве электроэнергии в этой стране достигает 80 %. Развивающиеся страны с незначительной ещё долей ядерной генерации электроэнергии высокими темпами строят АЭС.

[править] Принцип работы атомной электростанции

Атомная электростанция представляет собой комплекс технических сооружений, предназначенных для выработки электрической энергии путем использования энергии, выделяемой при контролируемой ядерной реакции. Атомные электростанции различаются по типу реактора (на быстрых и на медленных нейтронах), по виду отпускаемой энергии (АЭС и АТЭЦ), по количеству контуров (одноконтурные, двухконтурные, трехконтурные). В зависимости от типа конструкции в состав атомной электростанции могут входить: ядерный реактор, турбина, конденсатор, электрогенератор, парогенератор и др.

Ядерная реакция возникает при делении ядра атома. Ядра атомов разделяют нейтроны, которые попадающие в них извне. При этом возникают новые нейтроны и осколки деления, которые имеют огромную кинетическую энергию. Эта энергия передается теплоносителю, который поступает в парогенератор, где нагревает до кипения воду. Полученный при кипении пар вращает турбины, связанные с электрогенератором.

Ядерный реактор

Ядерным реактором называется устройство, осуществляющее управляемую реакцию деления ядра. Ядерный реактор состоит из многих элементов, таких как: ядерное горючее, замедлитель нейтронов, теплоноситель для вывода энергии и устройство для регулирования скорости реакции. Энергия, выделяемая из ядерного топлива, нагревает теплоноситель, который затем следует в парогенератор. Реактор окружают защитной оболочкой, задерживающей гамма-излучение.

Обычно в качестве горючего для ядерного реактора используются ядра изотопа урана, наиболее эффективно захватывающее медленные нейтроны. Захват медленных нейтронов происходит с гораздо большей вероятностью чем быстрых, поэтому в ядерных реакторах, которые работают на естественном уране, используются замедлители (вода, тяжёлая вода, бериллий, графит).

В качестве теплоносителей в ядерных реакторах на быстрых нейтронах используют жидкие металлы и газы, они дают возможность получить на выходе из реактора высокие температуры, позволяющие вырабатывать в парогенераторах пар высоких, сверхвысоких и закритических параметров. Теплоносители в реакторах на тепловых(медленных) нейтронах используют обычную и тяжелую воду, водяной пар, двуокись углерода.

Устройство для вывода энергии состоит из регулирующих и компенсирующих стержней. Регулирующие стержни предназначены для поддержания критического состояния в любой момент времени, для остановки, пуска реактора, перехода с одного уровня мощности на другой. Все эти операции требуют малых изменений реактивности. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы.

Парогенератор

Парогенератором называется теплообменный аппарат, использующий теплоту первичного теплоносителя ядерного реактора, для производства водяного пара с давлением выше атмосферного. Теплоноситель из реактора, прокачивающийся насосами через парогенератор, отдает часть тепла, а затем снова возвращается в реактор. В парогенераторе это тепло передается воде второго контура, находящейся под гораздо меньшим давлением, вследствие чего вода закипает. Образовавшийся пар поступает на паровую турбину, которая вращает электрогенератор, а затем в конденсатор, где пар охлаждают. Пар конденсируется и снова поступает в парогенератор. В конденсаторе используется вода из внешнего открытого источника.

Турбина и электрогенератор

Подавляющее большинство паровых турбин, устанавливаемых на АЭС с водоохлаждаемыми реакторами предназначены для работы на насыщенном паре. Тепловая энергия пара при его расширении в проточной части турбины превращается в кинетическую энергию потока пара, которая используется для вращения ротора турбины электрогенератора.

Конденсатор

В конденсатор поступают перегретые пары теплоносителя, охлаждающиеся до температуры насыщения, они конденсируются и переходят в жидкую фазу. Для конденсации пара от каждой единицы его массы отводят теплоту равную удельной теплоте конденсации. В качестве охлаждающей жидкости на АЭС используется большое количество воды, поступающее из водохранилища.

Эксперименты с атомом в довоенное время

В 1930х-1940х многие мировые ученые проводили фундаментальные радиохимические исследования, которые в будущем дали толчок возникновению атомных проектов.

В конце 1938 года немецкие физики обнаружили тепловыделение от цепной реакции атомов урана. Уже тогда было понятно, что перед учеными вещество невероятной мощи и силы, реакции которого требуют внимательного изучения. Все физики мира переключились на изучение проблем деления атома. Сразу было установлено, что атомы урана-238 делятся очень плохо, гораздо охотнее это делают частицы урана-235. Уран решили обогащать и повышать содержание 235х изотопов. Был найден и другой путь – работать с ураном – 238, который при определенных реакциях можно превратить в плутоний. А плутоний использовать как сырье для ядерных реакций. Физики-ядерщики в СССР, США и Европе в довоенное время работали в двух направлениях:

  • Обогащение урана-235
  • Переработка урана-238

С середины 1939 года США, Германия и Англия засекретили свои исследования по получению чистого урана и делению его атомов от Советского Союза. Обстановка в мире накалялась, развитые страны стали работать над урановыми проектами независимо друг от друга. С началом Второй мировой исследования ядерных реакций прекратили. Они возобновились осенью 1942го.

Экономическое значение

Доля атомной энергетики в общем производстве электроэнергии в различных странах.

В 2014 году ядерная энергия обеспечивала 2,6 % всей потребляемой человечеством энергии. Ядерный сектор энергетики наиболее значителен в промышленно развитых странах, где недостаточно природных энергоресурсов — во Франции, на Украине, в Бельгии, Финляндии, Швеции, Болгарии и Швейцарии. Эти страны производят от 20 до 76 % (во Франции) электроэнергии на АЭС.

В 2013 году мировое производство ядерной энергии выросло впервые с 2010 года — по сравнению с 2012 годом произошёл рост на 0,5 % — до 6,55 млрд МВт ч (562,9 млн тонн нефтяного эквивалента). Наибольшее потребление энергии атомных станций в 2013 году составило в США — 187,9 млн тонн нефтяного эквивалента. В России потребление составило 39,1 млн тонн нефтяного эквивалента, в Китае — 25 млн тонн нефтяного эквивалента, в Индии — 7,5 млн тонн.

Согласно отчёту Международного агентства по атомной энергии (МАГАТЭ), на конец 2016 года насчитывалось 450 действующих ядерных энергетических (то есть производящих утилизируемую электрическую и/или тепловую энергию) реакторов в 31 стране мира (кроме энергетических, существуют также исследовательские и некоторые другие).

Примерно половина мирового производства электроэнергии на АЭС приходится на две страны — США и Францию. США на АЭС производят только 1/8 своей электроэнергии, однако это составляет около 20 % мирового производства.

Абсолютным лидером по использованию ядерной энергии являлась . Единственная Игналинская АЭС, расположенная на её территории, вырабатывала электрической энергии больше, чем потребляла вся республика (например, в 2003 году в Литве всего было выработано 19,2 млрд кВт⋅ч, из них — 15,5 Игналинской АЭС). Обладая её избытком (а в Литве есть и другие электростанции), «лишнюю» энергию отправляли на экспорт.
Однако, под давлением ЕС (из-за сомнений в её безопасности — ИАЭС использовала энергоблоки того же типа, что и Чернобыльская АЭС), с 1 января 2010 года эта АЭС была окончательно закрыта (предпринимались попытки добиться продолжения эксплуатации станции и после 2009 года, но они не увенчались успехом[источник не указан 682 дня]), сейчас[когда?] решается вопрос о строительстве на той же площадке АЭС современного типа.

Объёмы производства ядерной электроэнергии по странам

Страны с атомными электростанциями.  Эксплуатируются АЭС, строятся новые энергоблоки.  Эксплуатируются АЭС, планируется строительство новых энергоблоков.  Нет АЭС, станции строятся.  Нет АЭС, планируется строительство новых энергоблоков.  Эксплуатируются АЭС, строительство новых энергоблоков пока не планируется.  Эксплуатируются АЭС, рассматривается сокращение их количества.  Гражданская ядерная энергетика запрещена законом.  Нет АЭС..

Основная статья: Атомная энергетика по странам

За 2016 год суммарно АЭС мира выработали 2477 млрд кВт⋅ч энергии, что составило 10,8 % всемирной генерации электричества.

Мировыми лидерами в производстве ядерной электроэнергии на 2017 год являются:

  • США (804 млрд кВт·ч/год), работает 99 атомных реакторов (20 % от вырабатываемой электроэнергии)
  • Франция (379 млрд кВт·ч/год), 58 реакторов, 71,6%.
  • Китай (210 млрд кВт·ч/год), 39 реакторов, 3,6%.
  • Россия (202,868 млрд кВт.ч /год), 35 реакторов, 18,9%.
  • Южная Корея (141 млрд кВт·ч/год), 24 реактора, 27,1%.
  • Канада (96 млрд кВт·ч/год), 19 реакторов, 14,6%.
  • Украина (85 млрд кВт·ч/год), 15 реакторов, 55,1%.
  • Германия (72 млрд кВт·ч/год), 9 реакторов, 11,6%.
  • Швеция (63 млрд кВт·ч/год), 8 реакторов, 39,6%.
  • Великобритания (65 млрд кВт·ч/год), 15 реакторов, 19,3%.

Примерно половина всемирной выработки электроэнергии на АЭС приходится на США и Францию.

Атомная электростанция: принцип работы

Каков принцип работы АЭС? Принцип работы АЭС базируется на цепной реакции деления атомов радиоактивного вещества – урана. Эта реакция происходит в активной зоне ядерного реактора.

Если не вдаваться в тонкости ядерной физики, принцип работы АЭС выглядит так: После пуска ядерного реактора из ТВЭЛов извлекаются поглощающие стержни, которые не дают урану вступить в реакцию.

Как только стрежни извлечены, нейтроны урана начинают взаимодействовать друг с другом.

Когда нейтроны сталкиваются, происходит мини-взрыв на атомном уровне, выделяется энергия и рождаются новые нейтроны, начинает происходить цепная реакция. Этот процесс выделяет тепло.

Тепло отдается теплоносителю. В зависимости от типа теплоносителя оно превращается в пар или газ, которые вращают турбину.

Турбина приводит в движение электрогенератор. Именно он по факту и вырабатывает электрический ток.

Если не следить за процессом, нейтроны урана могут сталкиваться друг с другом до тех пор, пока не взорвут реактор и не разнесут всю АЭС в пух и прах. Контролируют процесс компьютерные датчики. Они фиксируют повышение температуры или изменение давления в реакторе и могут автоматически остановить реакции.

Чем отличается принцип работы АЭС от ТЭС (теплоэлектростанций)?

Различия в работе есть только на первых этапах. В АЭС теплоноситель получает тепло от деления атомов уранового топлива, в ТЭС теплоноситель получает тепло от сгорания органического топлива (угля, газа или нефти). После того, как или атомы урана, или газ с углём выделили тепло, схемы работы АЭС и ТЭС одинаковы.

Примечания

Урановое топливо

Уран – серебристо-белый глянцевый металл высокой плотности. В природе встречаются три изотопа: U-238 (содержание = 99,2745%), U-235 (0,72%), U-234 (0,055). Топливом на АЭС служит U-235 как материал, способный самостоятельно поддерживать цепную ядерную реакцию. Но его природное содержание в исходном сырье мало, поэтому приходится заниматься искусственным обогащением (повышением содержания 235-го изотопа в топливе).

Россия обладает 9% общемировых разведанных запасов ядерного топлива (немногим более полумиллиона тонн). Добычей такого незаменимого сырья для атомной промышленности в нашей стране занимается Урановый холдинг «АРМЗ (Атомредметзолото)». 90% урана в России приносит Краснокаменское горно-химическое объединение.

Зарубежные активы представлены компанией Uranium One, подразделением нашей отечественной госкорпорации, владеющей производственными мощностями в США, Канаде, ЮАР, Казахстане, Австралии. Есть договорённость участия в разработке месторождения Мардай на территории Монголии.  

Наша страна обладает полностью завершённым циклом мощностей обогащения урана, достаточным для того, чтобы обеспечить своей продукцией каждый шестой реактор в мире. В основе самой передовой современной технологии лежит газоцентрифужный метод. Объединяет все обогатительные предприятия и организации Топливная компания «ТВЭЛ» – абсолютный монополист производства ядерного топлива в России.

Количество действующих реакторов по всему миру

Около 10% мировой электроэнергии вырабатывается примерно 450 ядерными энергетическими реакторами. Еще около 50 реакторов находятся в стадии строительства, что эквивалентно 15% существующей мощности.
В 2018 году атомная энергетика в мире поставили 2563 ТВтч (тераватт в час) электроэнергии, по сравнению с 2503 ТВтч в 2017 году. Это уже шестой год подряд, когда глобальная ядерная генерация растет, а объем производства на 60 ТВтч выше.

Производство атомной электроэнергии

Двенадцать стран в 2019 году произвели не менее одной четверти своей электроэнергии с помощью ядерного деления. Однако не все страны освоили изготовление ядерного топлива и покупают на мировом рынке.

Франция получает около трех четвертей своей электроэнергии от ядерной энергетики; Венгрия, Словакия и Украина получают более половины от ядерной энергии, в то время как Бельгия, Швеция, Словения, Болгария, Швейцария, Финляндия и Чешская Республика получают одну треть.

Южная Корея обычно получает более 30% своей электроэнергии от ядерной энергетики, в то время как в США, Великобритании, Испании, Румынии и России около одной пятой электроэнергии поступает от ядерной энергетики.

Япония привыкла полагаться на ядерную энергетику более чем на четверть своей электроэнергии и, как ожидается, вернется где-то к этому уровню.

Потребность в новых генерирующих мощностях

Существует явная потребность в новых генерирующих мощностях во всем мире, как для замены старых блоков ископаемого топлива, особенно угольных, которые выделяют много углекислого газа, так и для удовлетворения возросшего спроса на электроэнергию во многих странах.

В 2018 году 65% электроэнергии было произведено за счет сжигания ископаемого топлива. Несмотря на сильную поддержку и рост в последние годы возобновляемых источников электроэнергии, вклад ископаемого топлива в производство электроэнергии оставался практически неизменным в течение последних 10 лет или около того (66,5% в 2005 году).

Международное энергетическое агентство публикует ежегодные сценарии, связанные с энергетикой.
В его прогнозе развития мировой энергетики на последующие годы предусмотрен амбициозный “сценарий устойчивого развития”, который, в частности, предусматривает обеспечение чистой и надежной энергии и сокращение загрязнения воздуха. В этом сценарии декарбонизации выработка электроэнергии на АЭС к 2040 году увеличится почти на 90% до 4960 ТВтч, а мощность вырастет до 678 ГВт. Всемирная ядерная ассоциация выдвинула более амбициозный сценарий, предлагая добавить 1000 ГВт новых ядерных мощностей к 2050 году, чтобы обеспечить 25% электроэнергии из атома.

Обеспечение одной четверти мирового производства электроэнергии за счет использования атомной энергетики в мире позволит существенно сократить выбросы углекислого газа и окажет весьма позитивное воздействие на качество воздуха.

Конструкция и действие ядерной установки

Сердцем любой установки является ядерный реактор, от которого напрямую зависит, как работает атомная электростанция. Внутри него происходит распад тяжелых ядер на более мелкие фрагменты. Находясь в состоянии сильного возбуждения, они начинают испускать нейтроны и другие частицы.

Воздействие нейтронов приводит к новым делениям, после чего их становится еще больше и в результате возникают непрерывные самоподдерживающиеся расщепления, известные как цепная реакция. Данный процесс осуществляется с выделением большого количества энергии, которая является основной целью всей работы АЭС и определяет ее мощность.

Примерно 85% от общего количества энергии высвобождается за очень короткий промежуток времени от начала реакции. Остальные 15% дает радиоактивный распад продуктов деления после излучения ими нейтронов. После распада атомы приходят в более стабильное состояние, а сам процесс продолжается и по окончании деления.

Типовой ядерный реактор включает в себя следующие компоненты:

  • Обогащенный уран и другое ядерное топливо.
  • Теплоноситель, с помощью которого выводится энергия, полученная при работе реактора.
  • Регулировочные стержни.
  • Замедлитель нейтронов.
  • Защитная оболочка против излучения.

В активную зону установки помещены ТВЭЛ – тепловыделяющие элементы, содержащие ядерное топливо. Они скомпонованы в кассеты, по нескольку десятков элементов. Внутри каждой кассеты имеются каналы, по которым циркулирует теплоноситель. С помощью ТВЭЛ можно регулировать уровень мощности реактора.

Принцип такой регулировки заключается в следующем:

  • Топливный стержень должен иметь определенную критическую массу, по достижении которой и начинается ядерная реакция.
  • Каждый отдельный стержень имеет массу, не дотягивающую до критической. Реакция будет происходить, если в активную зону будут помещены все стержни.
  • Путем погружения и извлечения топливных стержней, реакцию можно сделать управляемой, в том числе регулировать мощность.
  • Когда значение массы превышает критическое, происходит выброс нейтронов топливными веществами. Далее наступает столкновение выброшенных частиц с атомами.
  • Все это приводит к образованию нестабильного изотопа. Его распад наступает сразу же, с выделением тепла и энергии в виде гамма-излучения.

Во время столкновения кинетическая энергия частиц переходит друг к другу и число распадов еще больше увеличивается со скоростью геометрической прогрессии. При отсутствии управления такая реакция происходит мгновенно и сопровождается сильным взрывом, в реакторе этот процесс постоянно контролируется.

Преимущества и недостатки использования АЭС

Потребление электроэнергии во всем мире постоянно возрастает. При этом рост потребления увеличивается более ускоренными темпами, чем выработка энергии, а практическое применение современных перспективных технических решений в данной области по многим причинам начнется через несколько лет. Решением данной проблемы становится совершенствование ядерной энергетики и возведение новых атомных электростанций. Можно выделить следующие преимущества эксплуатации атомных электростанций:

  1. Высокая энергоемкость используемого топливного ресурса. При полноценном выгорании один килограмм урана выделяет количество энергии, сопоставимое с результатом сжигания около 50 тонн нефти, либо вдвое больше тонн каменного угля
  2. Способность вторичного применения ресурса после переработки. Расщепленный уран, в отличие от отходов органического топлива, может быть повторно использован для выработки энергии. Дальнейшее развитие атомных электростанций предполагает полноценный переход на замкнутый цикл, что поможет обеспечить отсутствие образования каких-либо вредных отходов
  3. Атомная станция не способствует образованию парникового эффекта. Каждый день атомные электростанции помогают избежать эмиссии около 600 миллионов тонн углекислого газа. Действующие на территории России АЭС каждый год задерживают поступление в окружающую среду более 200 миллионов тонн углекислого газа
  4. Абсолютная независимость от местонахождения источников топлива. Большая удаленность атомной электростанции от месторождения урана никак не влияет на возможность ее функционирования. Энергетический эквивалент ядерного ресурса во много раз больше, в сравнении с органическим топливом, и расходы на его транспортировку минимальны
  5. Невысокая стоимость использования. Для большого числа стран выработка электроэнергии при помощи АЭС не затратнее, чем на других типах электростанций

Несмотря на большое количество положительных сторон эксплуатации атомных электростанций, существует несколько проблем. Основной недостаток заключается в тяжких последствиях аварийных ситуаций, для предотвращения которых электростанции оснащаются довольно сложными системами безопасности с большими запасами и резервированием. Таким образом обеспечивается исключение повреждения центрального внутреннего механизма даже при масштабной аварии.

Большой проблемой для эксплуатации АЭС также является их уничтожение после выработки ресурсов. Стоимость их ликвидации может достигать 20% от всех затрат на их сооружение. Кроме того, по техническим соображениям для атомных электростанций является нежелательным функционирование в маневренных режимах.

Первые атомные электростанции в мире позволили сделать большой шаг в усовершенствовании ядерной энергетики. В современных условиях в России около 17% электроэнергии вырабатывается именно при помощи АЭС. По причине выгоды эксплуатации АЭС многие страны приступают к строительству новых реакторов и рассматривают их как перспективный источник электроэнергии.

История атомной энергетики у нас в стране и за рубежом

Вторая половина 40 –х гг., ознаменовалась началом работ по созданию первого проекта, предполагающего использование мирного атома для генерации электроэнергии.  В 1948 году, И.В. Курчатов, руководствуясь заданием партии и советского правительства, внёс предложение о начале работ по практическому использованию атомной энергии, для вырабатывания электроэнергии.

Спустя два года,  в 1950г., неподалёку от посёлка Обнинское, расположенного в Калужской области, был дан старт строительству первой на планете АЭС. Запуск первой в мире промышленной атомной электростанции, мощность которой, составляла 5МВт, состоялся 27.06.1954г. Советский Союз стал первой в мире державой, которой удалось применить атом в мирных целях. Станция была открыта в получившем к тому времени статус города, Обнинске.

Но советские учёные не остановились на достигнутом, ими были продолжены работы в этом направлении,  в частности всего четыре года спустя  в 1958г., была начата эксплуатация первой очереди Сибирской АЭС. Её мощность в разы превосходила станцию в Обнинске и составляла 100МВт. Но для отечественных учёных и это, не было пределом, по завершению всех работ, проектная мощность станции составила 600МВт.

На просторах Советского Союза, строительство АЭС, приняло по тем временам, массовые масштабы. В том же году, была развёрнута стройка Белоярской АЭС,  первая очередь которой,  уже в  апреле 1964 году снабдила первым электричеством потребителей. География строительства атомных станций, опутала своей сетью всю страну, в этом же году запустили первый блок АЭС в Воронеже, его мощность равнялась 210МВт, второй блок запущенный пять лет спустя в 1969 году,  мог похвастаться мощностью в 365МВт.  бум строительства АЭС, не стихал на протяжении всей советской эпохи. Новые станции, или дополнительные блоки уже построенных, запускались с периодичностью в несколько лет.  Так, уже в 1973 году, собственную АЭС, получил Ленинград.

Однако Советская держава не была единственной  в мире, кому было под силу осваивать такие проекты. В Великобритании, также не дремали и, понимая перспективность данного направления, активно изучали этот вопрос. Спустя всего два года, поле открытия станции в Обнинске, англичане запустили собственный проект по освоению мирного атома. В 1956г, городке Колдер – Холл британцами была запущенная своя станция, мощность которой, превышала советский аналог и составляла 46МВт. Не отставали и на другом берегу Атлантики, год спустя американцы торжественно запустили в эксплуатацию станцию в Шиппингпорте. Мощность объекта составила 60МВт.

Мировые светила в данной отрасли, всерьёз задумались о повышении безопасности ядерных объектов. Итогом стало проведение учредительной ассамблеи, которая была организована 15.05.1989г в советской столице. На ассамблее приняли решение о создании Всемирной ассоциации, в которую должны войти все операторы атомных электростанций, её общепризнанной аббревиатурой является WANO. В ходе реализации своих программ, организация планомерно следит за повышением уровня безопасности атомных станций в мире.  Однако, несмотря на все приложенные усилия, даже самые современные и на первый взгляд кажущиеся безопасными объёкты, не выдерживают натиска стихий.  Именно по причине эндогенной катастрофы, которая проявилась в форме землетрясения и последовавшего за ним цунами в 2011 году произошла авария на станции Фукусима – 1.

Атомный блэкаут

Несколько фактов об атомных реакторах…

Интересно, что один реактор АЭС строят не менее 3х лет! Для постройки реактора необходимо оборудование, которое работает на электрическом токе в 210 кило Ампер, что в миллион раз превышает силу тока, которая способна убить человека.

Одна обечайка (элемент конструкции) ядерного реактора весит 150 тонн. В одном реакторе таких элементов 6.

Водо-водяной реактор

Как работает АЭС в целом, мы уже выяснили, чтобы все «разложить по полочкам» посмотрим, как работает наиболее популярный водо-водяной ядерный реактор. Во всем мире сегодня используют водо-водяные реакторы поколения 3+. Они считаются самыми надежными и безопасными.

Все водо-водяные реакторы в мире за все годы их эксплуатации в сумме уже успели набрать более 1000 лет безаварийной работы и ни разу не давали серьезных отклонений.

Структура АЭС на водо-водяных реакторах, подразумевает, что между ТВЭЛами циркулирует дистиллированная вода, нагретая до 320 градусов. Чтобы не дать ей перейти в парообразное состояние ее держат под давлением в 160 атмосфер. Схема АЭС называет ее водой первого контура.

Нагретая вода попадает в парогенератор и отдает свое тепло воде второго контура, после чего снова «возвращается» в реактор. Внешне это выглядит так, что трубки воды первого контура соприкасаются с другими трубками – воды второго контура, они передают тепло друг другу, но воды не контактируют. Контактируют трубки.

Таким образом, исключена возможность попадания радиации в воду второго контура, которая будет далее участвовать в процессе добычи электричества.

То, как работают АЭС далее, уже хорошо известно — вода второго контура в парогенераторах превращается в пар, пар вращает турбину, а турбина приводит в движение электрогенератор, который вырабатывает электроэнергию.

Праведный халифат : الخلافة الراشدية‎‎

Безопасность работы АЭС

Узнав принцип работы АЭС мы должны понимать как же устроена безопасность. Устройство АЭС сегодня требует повышенного внимания к правилам безопасности. Затраты на безопасность АЭС составляют примерно 40% от общей стоимости самой станции.

В схему АЭС закладываются 4 физических барьера, которые препятствуют выходу радиоактивных веществ. Что должны делать эти барьеры? В нужный момент суметь прекратить ядерную реакцию, обеспечивать постоянный отвод тепла от активной зоны и самого реактора, предотвращать выход радионуклеидов за пределы контайнмента (гермозоны).

Первый барьер – прочность урановых таблеток

Важно, чтобы они не разрушались под воздействием высоких температур в ядерном реакторе. Во многом то, как работает атомная станция, зависит от того, как «испекли» таблетки из урана на начальной стадии изготовления

Если таблетки с урановым топливом запечь неверно, то реакции атомов урана в реакторе будут непредсказуемыми.
Второй барьер – герметичность ТВЭЛов. Циркониевые трубки должны быть плотно запечатаны, если герметичность будет нарушена, то в лучшем случае реактор будет поврежден и работа остановлена, в худшем – все взлетит на воздух.
Третий барьер – прочный стальной корпус реактора, (та самая большая башня – гермозона) который «удерживает» в себе все радиоактивные процессы. Повредится корпус – радиация выйдет в атмосферу.
Четвертый барьер – стержни аварийной защиты. Над активной зоной на магниты подвешиваются стержни с замедлителями, которые могут за 2 секунды поглотить все нейтроны и остановить цепную реакцию.

Если, несмотря на устройство АЭС с множеством степеней защиты, охладить активную зону реактора в нужный момент не удастся, и температура топлива возрастет до 2600 градусов, то в дело вступает последняя надежда системы безопасности – так называемая ловушка расплава.

Дело в том, что при такой температуре дно корпуса реактора расплавится, и все остатки ядерного топлива и расплавленных конструкций стекут в специальный подвешенный над активной зоной реактора «стакан».

Ловушка расплава охлаждаема и огнеупорна. Она наполнена так называемым «жертвенным материалом», который постепенно останавливает цепную реакцию деления.

Таким образом, схема АЭС подразумевает несколько степеней защиты, которые практически полностью исключают любую возможность аварии.

История

Коллектив специалистов центра был образован в 1987—1989 годах под руководством Татьяны Заславской, Бориса Грушина, Валерия Рутгайзера и Юрия Левады до 2003 года работал во ВЦИОМе. Татьяна Заславская возглавляла ВЦИОМ в 1987—1992 гг., Юрий Левада — в 1992—2003 гг.

В 2003 году весь штат сотрудников, не согласившись со сменой руководства (совет директоров ВЦИОМ, состоящий из представителей государства, отправил Ю. Леваду в отставку), покинули ВЦИОМ, перейдя в созданный ими негосударственный центр исследования общественного мнения «ВЦИОМ-А». После того как Федеральная антимонопольная служба РФ запретила использовать это название (а также название журнала), организация была переименована в Аналитический Центр Юрия Левады (Левада-Центр).

Ученые СССР, работавшие в атомной энергетике

Над тем, чтобы создать первый в СССР ядерный реактор и атомную бомбу, первую в мире атомную станцию и советскую атомную подводную лодку работали лучшие умы Советского Союза. Кто они, люди, которые подарили нам атомную энергетику?

Игорь Васильевич Курчатов – считается «отцом атомной бомбы» и создателем множества научных открытий в области изучения атомов радиоактивных веществ. В конце 1940х Курчатов лично убедил Сталина в необходимости использовать атом в мирных целях. После этой встречи были подписаны около 60ти документов по развитию атомных исследований.

Зинаида Васильевна Ершова – «Мадам Кюри Советского Союза». Под руководством Курчатова смогла получить карбид урана и металлический уран. Интересно то, что в военное время Ершова находилась в эвакуации в Казахстане, добровольно — принудительно ее доставили в Москву «для работы по специальности».

Николай Антонович Доллежаль – главный конструктор реактора первой в мире АЭС. Возглавлял НИИхиммаш, ученые которого были привлечены к атомному проекту. Кроме того, Доллежаль возглавлял разработку энергетических реакторов для корабельных установок. Принимал участие в проектировании первой в СССР атомной бомбы.

Борис Григорьевич Дубовский – занимался проблемами радиационного облучения и безопасности АЭС. Изготовил первый дозиметр – прибор, для измерения дозы ионизирующего излучения. Участвовал в конструировании и запуске множества советских ядерных реакторов.

Интересно, что запуск Обнинской АЭС Игорь Курчатов отложил на 6 дней из-за того, что Дубовский улетел в Харьков и не мог вовремя вернуться в Россию.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector