Получение графена
Содержание:
- Содержание
- Почему у комнатного гибискуса опадают бутоны
- Использование в автомобилестроении
- История открытия
- Ссылки
- Индустриальное применение
- Диагностические меры
- два полета
- Аноним
- Использование в автомобилестроении
- Химические методы
- Способы получения
- Follow us
- Эпитаксия и разложение[править]
- На страже здоровья или перспективы в медицине
- Графен — дело тонкое
- В живописи
- Эпитаксия и разложение
- Тихая графеновая революция
- Тверже алмаза и легче перышка
- Простой способ получения высококачественного графена: две секунды в микроволновой печи +11
- Графеновые аккумуляторы – описание, история создания
- БУКЛИ (ПУКЛИ)
- Получение в бытовых условиях
- Красота не требует жертв
- No Comments
Содержание
Почему у комнатного гибискуса опадают бутоны
Использование в автомобилестроении
Согласно данным исследователей, удельная энергоемкость графена приближается к 65 кВт*ч/кг. Данный показатель в 47 раз превышает тот, который имеют столь распространенные ныне литий-ионные аккумуляторы. Этот факт ученые использовали для создания зарядных устройств нового поколения.
Графен-полимерный аккумулятор — прибор, при помощи которого максимально эффективно удерживается электрическая энергия. В настоящее время работа над ним ведется исследователями многих стран. Значительных успехов достигли в этом вопросе испанские ученые. Графен-полимерный аккумулятор, созданный ими, имеет энергоемкость, в сотни раз превышающую подобный показатель у уже существующих батарей. Используют его для оснащения электромобилей. Машина, в которой установлен графеновый аккумулятор, может проехать без остановки тысячи километров. На подзарядку электромобиля при исчерпании энергоресурса понадобится не более 8 минут.
История открытия
Графен представляет собой двухмерный кристалл. Его структура является гексагональной решеткой, состоящей из атомов углерода. Теоретические исследования графена начались задолго до получения его реальных образцов, так как данный материал является базой для построения трехмерного кристалла графита.
Еще в 1947 г. П. Воллес указал на некоторые свойства графена, доказав, что его структура аналогична металлам, и некоторые характеристики подобны тем, которыми обладают ультрарелятивистские частицы, нейтрино и безмассовые фотоны. Однако у нового материала есть и определенные существенные отличия, делающие его уникальным по своей природе. Но подтверждение этим выводам было получено только в 2004 г., когда Константином Новоселовым и впервые был получен углерод в свободном состоянии. Это новое вещество, которое назвали графеном, и стало крупным открытием ученых. Найти этот элемент можно в карандаше. Его графитовый стержень состоит из множества слоев графена. Каким образом карандаш оставляет след на бумаге? Дело в том, что, несмотря на прочность составляющих стержень слоев, между ними существуют весьма слабые связи. Они очень легко распадаются при соприкосновении с бумагой, оставляя след при письме.
Ссылки
Индустриальное применение
Различные сорбенты на основе оксида графена могут быть применены для дезакцивации зараженных техногенных и природных объектов. Крое того, данный наноматериал способен переработать подземные и поверхностные воды, а также почвы, очистив их от радионуклидов.
Фильтры из оксидов графена могут обеспечить суперчистотой помещения, где производятся электронные компоненты специального назначения. Уникальные свойства данного материала позволят проникнуть в тонкие технологии химической сферы. В частности, это может быть извлечение радиоактивных, рассеянных и редких металлов. Так, использование оксида графена позволит добыть золото из бедных руд.
Графен является самым прочным материалом на Земле. В 300 раз прочнее стали. Лист графена площадью в один квадратный метр и толщиной, всего лишь в один атом, способен удерживать предмет массой 4 килограмма. Графен, как салфетку, можно сгибать, сворачивать, растягивать. Бумажная салфетка рвется в руках. С графеном такого не случится.
Другие формы углерода: графен,
усиленный – арматурный графен
,
карбин, алмаз, фуллерен, углеродные нанотрубки, “вискерсы” .
Диагностические меры
ВПС – двустворчатый аортальный клапан может быть диагностирован при помощи:
- УЗИ;
- стандартного ЭКГ и суточного мониторинга;
- рентгенограммы легких.
В первую очередь кардиолог расспрашивает пациента и выявляет жалобы. Доктор устанавливает возможные первопричины развития нарушения.
Особое внимание к первичному осмотру. Дети с пороком сердца существенно отстают в физическом развитии от своих сверстников
При диагностике нарушения у ребенка грудного возраста врач может заметить посинение кожного покрова, гипотонус мышц и медленный набор веса.
При подозрении на двустворчатый клапан в обязательном порядке делается ЭКГ сердца
Основной диагностический метод – УЗИ. Это единственный способ подтвердить присутствие двустворчатого аортального клапана. Остальные исследования требуются для уточнения степени поражения и подбора лечебных мероприятий.
два полета
У меня за плечами пока два полета – из Хабаровска (рейс 567) и из Гонконга. Что осенью, что зимой остались только приятные воспоминания! Во-первых сразу отмечу, что полет проходил мягко, никакой тряски и прочих неприятных ощущений. Садились тоже хорошо! Порадовало, что выпало лететь на новом самолете. Внутри чисто, сам персонал общается вежливо, улыбчив – это очень приятно и еще один большой плюс. Учитывали пожелания пассажиров. Слишком соленая или там острая еда – нет проблем! Приятно столкнуться с таким профессионализмом и видеть что твое мнение имеет значение! Еще один интересный момент в полете – в Гонконге до терминала ехали вмести со стюардами и пилотами. Спасибо экипажу за хорошие полеты!
Аноним
Использование в автомобилестроении
Согласно данным исследователей, удельная энергоемкость графена приближается к 65 кВт*ч/кг. Данный показатель в 47 раз превышает тот, который имеют столь распространенные ныне литий-ионные аккумуляторы. Этот факт ученые использовали для создания зарядных устройств нового поколения.
Графен-полимерный аккумулятор — прибор, при помощи которого максимально эффективно удерживается электрическая энергия. В настоящее время работа над ним ведется исследователями многих стран. Значительных успехов достигли в этом вопросе испанские ученые. Графен-полимерный аккумулятор, созданный ими, имеет энергоемкость, в сотни раз превышающую подобный показатель у уже существующих батарей. Используют его для оснащения электромобилей. Машина, в которой установлен может проехать без остановки тысячи километров. На подзарядку электромобиля при исчерпании энергоресурса понадобится не более 8 минут.
Химические методы
Основная статья: Химические методы получения графена
Рис. 2. Слои интеркалированного графита можно легко отделить друг от друга
Кусочки графена также можно приготовить из графита, используя химические методы. Для начала микрокристаллы графита подвергаются действию смеси серной и азотной кислот. Графит окисляется, и на краях образца появляются карбоксильные группы графена. Их превращают в хлориды при помощи тионилхлорида. Затем под действием октадециламина в растворах тетрагидрофурана, тетрахлорметана и дихлорэтана они переходят в графеновые слои толщиной 0,54 нм. Этот химический метод не единственный, и, меняя органические растворители и химикаты, можно получить нанометровые слои графита.
В статьях описан ещё один химический метод получения графена, встроенного в полимерную матрицу.
Восстановлением монослойной плёнки оксида графита, например, в атмосфере гидразина с последующим отжигом в смеси аргон/водород, могут быть получены графеновые плёнки. Однако качество графена, полученного восстановлением оксида графита, ниже по сравнению с графеном, полученным скотч-методом вследствие неполного удаления различных функциональных групп. Нанесение плёнки оксида графита на DVD-диск и обработка лазером в DVD-дисководе привели к получению на диске плёнки графена с высокой электропроводностью (1738 См/м) и удельной поверхностью 1520 м2/г.
Способы получения
Открытие этого материала может быть датировано 2004 годом, после чего учёными были освоены различные методы его получения, которые представлены ниже:
- Химическое охлаждение, реализуемое методом фазовых преобразований (его называют CVD-процессом);
- Так называемое «эпитаксиальное выращивание», осуществляемое в условиях вакуума;
- Метод «механической эксфолиации».
Механический метод
Рассмотрим каждый из них более подробно.
Механический
Начнём с последнего из этих способов, считающегося наиболее доступным для самостоятельного исполнения. Для того чтобы получить графен в домашних условиях, необходимо последовательно произвести следующий ряд операций:
- Сначала нужно подготовить тонкую графитовую пластину, которая затем крепится на клеящейся стороне специальной ленты;
- После этого она складывается вдвое, а затем снова возвращается в исходное состояние (её концы разводятся);
- В результате таких манипуляций на клеящей стороне ленты удаётся получить двойной слой графита;
- Если проделать эту операцию несколько раз, несложно будет добиться малой толщины нанесённого слоя материала;
- После этого скотч с расщеплёнными и очень тонкими плёнками прикладывается к подложке из окисла кремния;
- Вследствие этого плёнка частично остаётся на подложке, образуя графеновую прослойку.
Недостатком этого метода является сложность получения достаточно тонкой плёнки заданного размера и формы, которая бы надёжно фиксировались на отведённых для этого частях подложки.
В настоящее время большая часть используемого в повседневной практике графена производится именно таким образом. За счёт механической эксфолиации удаётся получить соединение довольно высокого качества, но для условий массового производства данный метод совершенно не годится.
Промышленные методы
Одним из промышленных способов получения графена является выращивание его в вакууме, особенности которого можно представить следующим образом:
- Для его изготовления берётся поверхностный слой карбида кремния, всегда имеющийся на поверхностях этого материала;
- Затем заранее подготовленная кремниевая пластина нагревается до сравнительно высокой температуры (порядка 1000 К);
- За счёт происходящих при этом химических реакций наблюдается разделение атомов кремния и углерода, при котором первые из них тут же испаряются;
- В результате такой реакции на пластинке остается чистый графен (G).
К недостаткам этого метода можно отнести необходимость высокотемпературного нагрева, с обеспечением которого нередко возникают трудности технического характера.
Наиболее надежным промышленным способом, позволяющим избежать описанных выше сложностей, является так называемый «CVD-процесс». При его реализации происходит химическая реакция, протекающая на поверхности металлического катализатора при его соединении с газами углеводорода.
В результате всех рассмотренных выше подходов удаётся получать чистые аллотропные соединения двумерного углерода в виде слоя толщиной всего лишь в один атом. Особенностью такого образования является соединение этих атомов в гексагональную решетку за счёт образования так называемых «σ» и «π»-связей.
Носители электрического заряда в решётке графена отличаются высокой степенью подвижности, значительно превышающей этот показатель для других известных полупроводниковых материалов. Именно по этой причине он способен прийти на смену классическому кремнию, традиционно используемому при производстве интегральных микросхем.
Кремниевые подложки
Follow us
Эпитаксия и разложение[править]
Следует упомянуть ещё два метода: радиочастотное плазмохимическое осаждение из газовой фазы (англ. PECVD), рост при высоком давлении и температуре (англ. HPHT). Из этих методов только последний можно использовать для получения плёнок большой площади.
Работы посвящёны получению графена, выращенного на подложках карбида кремния SiC(0001). Графитовая плёнка формируется при термическом разложении поверхности подложки SiC (этот метод получения графена гораздо ближе к промышленному производству), причём качество выращенной плёнки зависит от того, какая стабилизация у кристалла: C-стабилизированная или Si-стабилизированная поверхность — в первом случае качество плёнок выше. В работах та же группа исследователей показала, что, несмотря на то, что толщина слоя графита составляет больше одного монослоя, в проводимости участвует только один слой в непосредственной близости от подложки, поскольку на границе SiC-C из-за разности работ выхода двух материалов образуется нескомпенсированный заряд. Свойства такой плёнки оказались эквивалентны свойствам графена.
Графен можно вырастить на металлических подложках рутения и иридия.
На страже здоровья или перспективы в медицине
Графен поможет человечеству победить рак. Он способен находить клетки опухоли в организме. Это удивительное свойство обнаружили ученые из Университета штата Иллинойс. Феномен связан с разницей электрических потенциалов здоровых и раковых клеток, которую легко определяют частицы материала.
Уверенно можно сказать, что одной из главных сфер применения графена станут различные биодатчики, кардиостимуляторы, протезы, элементы нейроинтерфейса. Например, на основе этого материала уже разработаны специальные полупрозрачные татуировки, способные показывать температуру тела и состояние кожи. Медики надеются, что в будущем подобные рисунки смогут измерять активность сердца, мозга, снимать другие важные показатели.
Возможно, что графен поможет залечивать переломы костей. Ученые из Университета Карнеги-Меллона создали на его основе биоразлагаемый материал, который привлекает стволовые клетки к месту перелома. Это значительно ускоряет процесс восстановления. Пока этот метод опробован только на мышах, так что до практического использования еще далеко.
Графен — дело тонкое
— Если верить исследованиям маркетологов, в ближайшие двадцать лет мировой рынок гибкой электроники превысит 300 миллиардов долларов, — рассказывает гендиректор компании «Графенокс», старший научный сотрудник Института проблем химической физики РАН Сергей Баскаков. — В миниатюрных и гибких девайсах металлические провода исключены. Их место займут напечатанные на тонких полимерных подложках проводящие чернила. В современных чернилах для создания электропроводимости используют металлические микро- или наночастицы (серебро, медь, никель и другие). Мы заменили их частицами графена, которые имеют ряд преимуществ: они легче и дешевле, обладают гибкостью и эластичностью, не окисляются со временем. Графеновые чернила применимы для печати NFC и RFID-меток, гибких шлейфов и электрических плат. На их основе можно создавать антистатические, экранирующие и нагревательные покрытия практически на любом материале: полимерах, бумаге, тканях».
Графеновые частицы получают из природного графита, который расщепляется физико-химическими методами вплоть до одинарных слоев. Различные методы дают на выходе разный материал: частицы могут отличаться поперечными размерами (от сотен нанометров до десятков микрометров), толщиной (от одного до нескольких графеновых слоев), степенью окисления, наличию дефектов, примесей и т. д. По словам ученых, для каждого приложения нужно проводить специальную НИОКР и синтезировать графеновые частицы целевой модификации. Например, для модернизации электродов литий-ионных батарей в первую очередь нужны тонкие, хорошо проводящие частицы с большой удельной площадью поверхности. Для армирования бетонов толщина и электропроводность графеновых частиц играет меньшую роль, однако они должны быть модифицированы для лучшего сцепления внутри бетонной смеси.
Использование графенов в качестве армирующих добавок в бетонные и асфальтобетонные смеси — еще одно перспективное направление развития. Внедрение графена в бетон приводит к увеличению его прочности на 30%. На столько же возрастает и скорость набора прочности бетона, что позволяет сократить сроки строительства
— Сейчас мы сотрудничаем с несколькими технологическими стартапами, — рассказывает Максим Рыбин. — Компания «Фэском», резидент «Сколково», производит системы накопления электроэнергии на базе литий-ионных ячеек с добавками микрочастиц графена для увеличения их удельной емкости, количества циклов заряда/разряда и глубины разряда
Команда разработчиков из Электрогорска трудится над созданием смазочных материалов для велосипедов с применением присадок из графеновых частиц, которые уменьшают трение и, как следствие, увеличивают срок службы деталей и период между техосмотрами, что важно для шоссейных велогонок. Графеновые смазки успешно прошли испытание этим летом с участием ведущих российских спортсменов: команда SlowFlowTeam подтвердила эффективность применения графеновой смазки на велотреке, а Петр Винокуров, многократный призер всероссийских соревнований по скоростному спуску, одобрил использование смазки в экстремальных условиях
Вывод на рынок графеновых велосмазок запланирован на следующий год под брендом Bike Therapy.
Использование графенов в качестве армирующих добавок в бетонные и асфальтобетонные смеси — еще одно перспективное направление развития, считает Максим Рыбин. Внедрение графена в бетон приводит к увеличению его прочности на 30%. На столько же возрастает и скорость набора прочности бетона, что позволяет сократить сроки строительства. Интерес к графеновым материалам проявляют производители тепло- и электропроводящих пластиков для энергетических и климатических систем, а также компании, выпускающие антикоррозийные покрытия, добавление графенов в которые улучшает эксплуатационные характеристики на 25–30%.
— Совместно с компанией «Графенокс» мы планируем запустить производство мощностью 500 килограммов графеновых частиц в месяц к середине 2021 года, — говорит Максим Рыбин
— Уже сейчас понятно, что основными нашими клиентами будут инновационные предприятия, которым важно получить конкурентное преимущество на старте. Но для серьезного развития графеновых технологий необходимо участие крупного бизнеса
Российским графеновым компаниям и лабораториям есть чем его заинтересовать. Совместные усилия помогут сгладить кривую хайп-цикла и ускорить выход российской графеновой промышленности на «плато продуктивности».
В живописи
Эпитаксия и разложение
Следует упомянуть ещё два метода: радиочастотное плазмохимическое осаждение из газовой фазы (англ. PECVD) и рост при высоком давлении и температуре (англ. HPHT). Из этих методов только последний можно использовать для получения плёнок большой площади.
Работы посвящены получению графена, выращенного на подложках карбида кремния SiC(0001). Графитовая плёнка формируется при термическом разложении поверхности подложки SiC (этот метод получения графена гораздо ближе к промышленному производству), причём качество выращенной плёнки зависит от того, какая стабилизация у кристалла: C-стабилизированная или Si-стабилизированная поверхность — в первом случае качество плёнок выше. В работах та же группа исследователей показала, что, несмотря на то, что толщина слоя графита составляет больше одного монослоя, в проводимости участвует только один слой в непосредственной близости от подложки, поскольку на границе SiC-C из-за разности работ выхода двух материалов образуется нескомпенсированный заряд. Свойства такой плёнки оказались эквивалентны свойствам графена.
Графен можно вырастить на металлических подложках рутения и иридия.
Тихая графеновая революция
«У графена очень много интересных физических свойств и явлений, например электронные свойства, которые позволяют использовать графен для конструирования сложных электронных наноустройств. Есть работы, в которых его используют для защиты наночастиц от окисления», — рассказал в беседе с RT старший научный сотрудник кафедры химической кинетики химического факультета МГУ им. М.В. Ломоносова Владимир Боченков.
Также по теме
Новые свойства графена помогут создавать топливо «из воздуха»
Исследование, проведённое физиками в Университете Манчестера, показало, что открытый в 2010 году графен может быть использован в…
Кроме того, графен поможет решить одну из главных задач современности — получить недорогие, надёжные и экологически безопасные источники энергии. Так, графеновые композиты позволяют создать более эффективные солнечные панели. Учёные из Массачусетского технологического института доказали, что при помощи графена можно сделать эластичные, дешёвые и прозрачные солнечные элементы, превращающие практически любую поверхность в источник электроэнергии. Солнечные батареи из графена, по словам учёных, могут производить энергию даже в дождь.
«В графене можно делать определённые отверстия, выбивая некоторые атомы углерода, и получать регулируемые поры, которые можно использовать в качестве мембраны в батареях и топливных ячейках. Также мембраны на основе графена могут удешевить производство тяжёлой воды. Она необходима в атомной промышленности для получения относительно экологически чистой энергии. Здесь опять же уникальные свойства графена позволяют быстрее разделять субатомные частицы, делая весь процесс очень экономичным. В результате мы получаем более зелёную и дешёвую атомную энергию», — отметил Боченков.
Крупнейшие технологические компании уже приступили к созданию литийионных аккумуляторов для смартфонов с использованием графена. Инновационная технология позволяет заряжать батарею быстрее и хранить заряд дольше.
Графен можно использовать в качестве мембраны для фильтрации атомов водорода в воздухе и получить биологически чистое топливо. К такому выводу пришли первооткрыватели графена. Андрей Гейм и Константин Новосёлов выяснили, что при высоких температурах и присутствии платины в качестве ускорителя реакции графен пропускает положительно заряженные ионы водорода (протоны) и задерживает практически всё остальное. Такая технология поможет совершить прорыв в развитии зелёной энергетики.
Также по теме
«Рассеять энергию пули»: как нанотехнологии используются в военном деле
В России и мире активно ведутся разработки в области материалов, которые позволяют создавать новые средства индивидуальной бронезащиты…
Взяли на вооружение графен и производители военной продукции. Выяснилось, что материал обладает пуленепробиваемыми свойствами. Учёные из Нью-Йоркского университета получили очень прочные и почти невесомые бронежилеты. В ходе эксперимента физики запустили стеклянную микропулю в листы графена толщиной от десяти до 100 слоёв. Графен рассеял энергию пули, летящей на скорости 3000 м/с. Однако в точке удара материал вытянулся в форме конуса, а затем треснул. Появление трещин не позволяет пока поставить графеновые бронежилеты на службу полицейским. По оценкам специалистов, чтобы защитить своих обладателей, такие бронежилеты должны состоять из миллионов слоёв графена. А для этого требуется наладить его производство в промышленных масштабах.
Проник графен и в биологию. В 2016 году китайские учёные накормили шелкопрядов тутовыми листьями, которые были сбрызнуты препаратами, содержащими графен. В итоге экспериментаторы получили прочную и хорошо проводящую электричество графеновую шёлковую нить.
Тверже алмаза и легче перышка
Графен – самый прочный из известных нам материалов. По этому параметру он в двести раз превосходит сталь. Лист графена толщиной в один атом, выдержит давление острия карандаша, на другой стороне которого балансирует слон. А ученые из Georgia Tech пришли к выводу, что двухслойной пленке из этого материала не страшна даже пуля.
Понятно, что мимо таких способностей не могли пройти компании, занимающиеся военными разработками и защитным снаряжением. Уже появилось множество проектов графеновой брони, скафандров и легких бронежилетов. Правда, пока не совсем понятно, как из идеального двумерного материала сделать трехмерный, сохранив при этом его уникальные свойства.
Простой способ получения высококачественного графена: две секунды в микроволновой печи +11
- 02.09.16 05:03
•
alizar
•
#280030
•
Гиктаймс
•
•
18800
Энергия и элементы питания, Научно-популярное, Физика, Производство и разработка электроники, Химия
Волокна графена под сканирующим электронным микроскопом. Чистый графен восстановлен из оксида графена (GO) в микроволновой печи. Масштаб 40 мкм (слева) и 10 мкм (справа). Фото: Jieun Yang, Damien Voiry, Jacob Kupferberg / Rutgers University
Графен — 2D-модификация углерода, образованная слоем толщиной в один атом углерода. Материал обладает высокой прочностью, высокой теплопроводностью и уникальными физико-химическими свойствами. Он демонстрирует максимальную подвижность электронов среди всех известных материалов на Земле. Это делает графен практически идеальным материалом в самых различных приложениях, в том числе в электронике, катализаторах, элементах питания, композитных материалах и т.д. Дело за малым — научиться получать качественные слои графена в промышленных масштабах.
Химики из Ратгерского университета (США) нашли простой и быстрый метод производства высококачественного графена путём обработки оксида графена в обычной микроволновой печи. Метод на удивление примитивный и эффективный.
Оксид графита — соединение углерода, водорода и кислорода в различных соотношениях, которое образуется при обработке графита сильными окислителями. Чтобы избавиться от оставшегося кислорода в оксиде графита, а затем получить чистый графен в двумерных листах, нужно приложить значительные усилия.
Оксид графита смешивают с сильными щелочами и ещё дальше восстанавливают материал. В результате получаются мономолекулярные листы с остатками кислорода. Эти листы принято называть оксидом графена (GO). Химики испробовали разные способы удаления лишнего кислорода из GO (, , , ), но восстановленный такими способами GO (rGO) остаётся сильно неупорядоченным материалом, который далёк по своим свойствам от настоящего чистого графена, полученного методом химического осаждения из газовой фазы (ХОГФ или CVD).
Даже в неупорядоченной форме rGO потенциально может быть полезен для энергоносителей (, , , , ) и катализаторов (, , , ), но для извлечения максимальной выгоды от уникальных свойств графена в электронике нужно научиться получать чистый качественный графен из GO.
Химики из Ратгерского университета предлагают простой и быстрый способ восстановления GO до чистого графена, используя 1-2-секундные импульсы микроволнового излучения. Как видно на графиках, графен, полученный «микроволновым восстановлением» (MW-rGO) по своим свойствам намного ближе к чистейшему графену, полученному с помощью ХОГФ.Физические характеристики MW-rGO, по сравнению с нетронутым оксидом графена GO, восстановленным оксидом графена rGO и графеном, полученным методом химического осаждения из газовой фазы (CVD). Показаны типичные хлопья GO, осаждённые на кремниевую подложку (А); рентгеновская фотоэлектронная спектроскопия (B); рамановская спектроскопия и соотношение размера кристаллов (La) к отношению пиков l2D/lG в рамановском спектре для MW-rGO, GO и ХОГФ (CVD). Иллюстрации: Rutgers UniversityЭлектронные и электрокаталитические свойства MW-rGO, по сравнению с rGO. Иллюстрации: Rutgers University
Техпроцесс получения MW-rGO состоит из нескольких этапов.
- Окисление графита модифицированным методом Хаммерса и растворение его до однослойных хлопьев оксида графена в воде.
- Отжиг GO, чтобы материал стал более восприимчив к микроволновому облучению.
- Облучение хлопьев GO в обычной микроволновой печи мощностью 1000 Вт на 1-2 секунды. Во время этой процедуры GO быстро нагревается до высокой температуры, происходит десорбция кислородных групп и великолепная структуризация углеродной решётки.
На изображениях с просвечивающего электронного микроскопа показана структура листов графена со шкалой 1 нм. Слева — однослойный rGO, на котором много дефектов, в том числе функциональные группы кислорода (синяя стрелка) и дыры в углеродном слое (красная стрелка). По центру и справа — отлично структурированный двуслойный и трёхслойный MW-rGO. Фото: Rutgers University2коэффициента Тафеля«High-quality graphene via microwave reduction of solution-exfoliated graphene oxide»опубликованаScience
Графеновые аккумуляторы – описание, история создания
Технологическим прорывом на пути создания сверхъемких аккумуляторных батарей стало открытие графена.
Графен – это углеродная пленка, образованная жестким соединением атомов углерода в гексагональную структуру, напоминающую пчелиные соты. Получен уникальный материал из графита методом расщепления. Толщина листа графена всего один атом – это первый в истории двумерный кристалл, который представляет собой почти идеальный проводник.
Ученые за открытие графена получили Нобелевскую премию, потому что материал нового поколения уникален и обладает, помимо тонкости, другими замечательными свойствами:
- высокой электропроводностью;
- гибкостью;
- теплопроводностью;
- огромной механической прочностью;
- прозрачностью;
- непроницаемостью для большинства газов и жидкостей.
В последние годы для исследований технологий на основе графена выделяются большие средства – область его применения обширна: в отраслях высоких технологий, в электротехнической области промышленности, в космических и военных отраслях, в медицине, в автомобилестроении и сфере экологии.
Идеален графен для производства аккумулятора – максимальное отношение поверхности графенового листа к объему позволяет компоновать материал в плоский проводник, который накапливает большой заряд практически мгновенно.
Состав батареи
Графеновый аккумулятор что это и как он устроен рассмотрим подробно.
Устройство представляет собой специальный металлополимерный корпус, в который вставлены две пластины из разнородных металлов (медь и алюминий) с выводами для обеспечения электрических контактов – между электродами помещен электролит (жидкий или твердый). Анод содержит восстановитель, катод – окислитель. Внутри корпуса стоит разделительная пластина – сепаратор, который не дает отрицательно заряженным атомам лития свободно перемещаться между электродами.
Устройство графеновых аккумуляторов сходно с литий-полимерными, только в графеновых батареях электролитом и сепаратором служит графен.
Принцип работы
Схема работы графен-полимерных аккумуляторов не отличается от литий-ионных. Принцип одинаков – при заряде и разряде ионы лития постоянно перемещаются между анодом и катодом через электролит, в то время как электронам приходится достигать анода или катода по внешней цепи, создавая в ней электрический ток.
Происходит это так:
- При разряде на аноде происходит окислительная химическая реакция, которая приводит к появлению свободных электронов. Они стремятся попасть на катод, где их концентрация мала, однако на пути свободных электронов возникает сепаратор, поэтому для них остается единственный путь – цепь нагрузки, куда замкнута батарея. Направленное движение электронов питает присоединенное к батарее устройство энергией.
- Положительно заряженные ионы лития также направляются к катоду, но уже через сепаратор, который свободно пропускает положительно заряженные частицы.
- После перемещения всех электронов к катоду наступает фаза разряда аккумулятора.
- Подав на электроды напряжение определенной величины, можно запустить процесс перемещения ионов в обратном порядке – электроны опять соберутся на аноде и будут оставаться там до очередного подключения нагрузки.
Преимущества над литиевыми
Несмотря на сходство конструкции и принцип действия, графитовые аккумуляторы превосходят литиевые по своим характеристикам – графен быстрее накапливает заряд за счет высокой электропроводности.
БУКЛИ (ПУКЛИ)
Получение в бытовых условиях
Можно ли изготовить графен в домашних условиях? Оказывается, да! Необходимо просто взять кухонный блендер мощностью не менее 400 Вт, и следовать методике, разработанной ирландскими физиками.
Как же изготовить графен в домашних условиях? Для этого в чашу блендера выливают 500 мл воды, добавляя в жидкость 10-25 миллилитров любого моющего вещества и 20-50 грамм толченого грифеля. Далее прибор должен поработать от 10 минут до получаса, вплоть до появления взвеси из чешуек графена. Полученный материал будет обладать высокой проводимостью, что позволит использовать его в электродах фотоэлементов. Также произведенный в бытовых условиях графен способен улучшить свойства пластика.
Красота не требует жертв
Специалисты Северо-Западного университета (США) превратили чёрный «от природы» графен в суперстойкую краску для волос.
В ходе эксперимента американские учёные покрыли образцы человеческого волоса раствором из листов графена. Так, физикам удалось превратить светлые, платиновые волосы в угольно-чёрные. Новый цвет оставался стойким на протяжении 30 смывов.
Краска на основе графена обладает дополнительными преимуществами, утверждают американские исследователи. Каждый покрытый ею волос подобен маленькому проводу, способному проводить тепло и электричество. Это означает, что волосы, окрашенные графеновой краской, легко рассеивают статическое электричество и решают проблему электризующихся волос.
- globallookpress.com
Американские учёные также полагают, что их краска абсолютно безвредна.
«Наружный слой ваших волос, или кутикула, выполняет защитную функцию и состоит из тонких клеток наподобие рыбных чешуек. Чтобы приподнять эти чешуйки и позволить молекулам краски быстро проникнуть в волосы, используются аммиак, перекись водорода или органические амины», — сообщил автор исследования Цзясин Хуан.
Из-за подобных манипуляций волосы постепенно истончаются. Проблему позволяет решить краска, которая покрывает волосы, но не проникает в их структуру. Однако такая краска очень быстро смывается. Как утверждают специалисты Северо-Западного университета, их изобретение позволяет справиться с обеими проблемами.
В индустрию моды и красоты графен начал проникать ещё в 2017 году, когда британская компания CuteCircuit представила платье с элементами из этого чудо-материала. Платье Graphene Dress со встроенными светодиодами благодаря графену меняет цвет «в такт» дыханию его обладательницы.
- Платье на основе графена, Манчестер, 2017 год
- Reuters
«Материал будущего» выполняет в платье одновременно две задачи: он является датчиком, улавливающим частоту дыхания, а также питает светодиоды, которые и меняют цвет платья. Разработчики умной одежды считают, что графен можно использовать для получения тканей, которые будут радикально менять свой цвет. Презентация Graphene Dress состоялась на родине этого материала — в Манчестере.