Ракетные двигатели
Содержание:
- Как подготовить картошку к проращиванию?
- Классификация, типы и виды электрических ракетных двигателей
- Жидкотопливные ракеты
- Сфера применения
- Принцип работы турбовентиляторного двигателя
- Ссылки
- Твердотопливные ракеты: конфигурации
- Таможенные ограничения
- Будущее ракетных двигателей
- «Ни у одной страны нет подобных разработок»
- Государственное устройство Бразилии
- Электроракетный двигатель, сущность, устройство, принцип работы:
- Рекомендации
- Явление отдачи
- Как устроены ракетные двигатели (3 минуты чтения и все понятно)
- Плазменные ракетные двигатели
- Зачем нужен ядерный двигатель для космического корабля
- Принцип работы реактивного двигателя
- Потребность пока невысокая, зато разговоров хватает
- Твердотопливные ракеты: конфигурации
- Совместимое снаряжение
- Галерея
Как подготовить картошку к проращиванию?
Подготовить посевной материал картофеля к посадке не представляет сложности, если придерживаться некоторых правил. Например, можно приготовить настой пижмы, который ускоряет появление ростков. 60 г сухой травы пижмы заливают 500 мл кипятка. Настой оставляют до полного остывания, затем выливают в раствор для вымачивания картошки. Через одно ведро такого раствора пропускают до центнера посевного материала.
Влага и повышенная температура стимулирует появление глазков.
Чтобы ростки не сильно вытягивались, через 14 суток их помещают в прохладное место при температуре 8–10 градусов. Главное, следить за тем, чтобы ящики находились при этом под открытыми солнечными лучами.
Классификация, типы и виды электрических ракетных двигателей
По принципу действия:
– электротермические (электронагревные) ракетные двигатели,
– электростатические ракетные двигатели,
– электромагнитные ракетные двигатели.
Для каждого типа и вида двигателя используется определенное рабочее тело: газ, жидкость или твердое вещество.
По режиму работы различают стационарные и импульсные электромагнитные ракетные двигатели.
Стационарные электромагнитные ракетные двигатели работают непрерывно. Их разновидностями являются холловские двигатели (двигатели на основе эффекта Холла) и МГД-двигатели.
Импульсные электромагнитные ракетные двигатели работают в режиме кратковременных импульсов длительностью от нескольких микросекунд до нескольких миллисекунд. Варьируя частоту включений двигателя и длительность импульсов, можно получать любые необходимые значения суммарного импульса тяги.
Разновидностями импульсных электромагнитных ракетных двигателей являются пинчевые двигатели, двигатели с бегущей волной, коаксильные и линейные (шинные, рельсовые) двигатели.
На базе указанных основных типов (классов) ЭРД создаются различные промежуточные и комбинированные варианты, в наибольшей степени отвечающих конкретным условиям использования.
Жидкотопливные ракеты
В 1926 году Роберт Годдард испытал первый двигатель на основе жидкого топлива. Его двигатель использовал бензин и жидкий кислород. Также он пытался решить и решил ряд фундаментальных проблем в конструкции ракетного двигателя, включая механизмы накачки, стратегии охлаждения и рулевые механизмы. Именно эти проблемы делают ракеты с жидким топливом такими сложными.
Основная идея проста. В большинстве жидкотопливных ракетных двигателях топливо и окислитель (например, бензин и жидкий кислород) закачиваются в камеру сгорания. Там они сгорают, чтобы создать поток горячих газов с высокой скоростью и давлением. Эти газы проходят через сопло, которое еще больше их ускоряет (от 8000 до 16 000 км/ч, как правило), а после выходят. Ниже вы найдете простую схему.
- Жидкий водород и жидкий кислород (основные двигатели космических шаттлов).
- Бензин и жидкий кислород (первые ракеты Годдарда).
- Керосин и жидкий кислород (использовались на первой ступени «Сатурна-5» в программе «Аполлон»).
- Спирт и жидкий кислород (использовались в немецких ракетах V2).
- Четырехокись азота/монометилгидразин (использовались в двигателях «Кассини»).
Сфера применения
Использование ПВРД на пилотируемых самолетах нецелесообразно, ведь для их запуска нужны дополнительные двигатели. Намного проще сразу установить, например, ТРД. Именно поэтому их применение сводится к установке на крылатые ракеты, летающие мишени и непилотируемые самолеты, летающие со скоростью в пределах от 2 до 5М. В основном это «одноразовые» двигатели, что вполне логично, учитывая их невысокую стоимость и простую конструкцию. Запуск аппаратов с ПВРД осуществляется за счет их разгона до рабочей скорости с помощью самолетов-носителей или ракетных ускорителей.
Гиперзвуковые ПВРД планируется использовать на космических аппаратах, но пока это только теория.
Несмотря на то, что использование ПВРД в настоящее время ограничено, постоянно ведутся работы по улучшению их рабочих характеристик и созданию новых моделей.
Последняя разработка является двигатель Sabre частной фирмы Reaction Engines.
Суть данного двигателя в том, что традиционные двигатели, которые сегодня применяются в авиации, для полета на гипер скоростях требуют спецрезервуаров с жидким кислородом, если самолет развивает в полете скорость более 3000 км/ч. Обыкновенный воздух на таких скоростях нагревается до очень высоких температур, порядка 1000 градусов по Цельсию, что резко понижает термическое КПД. Особенность двигателя Sabre в том, что позволяет применять атмосферный воздух вместо жидкого кислорода. Когда воздух проходит сквозь двигатель, он сжимается и разогревается, в это время он попадает в холодильник, который оснащен целой системой трубок, которые наполняются гелием эти трубки, гелий охлаждает воздух до необходимой температуры. У двигателя Sabre есть одна особенность. Он в состоянии работать в 2-х режимах: как реактивный двигатель и как ракетный двигатель. Устанавливаться он будет на самолете Skylon. Данная аппарат сможет разогнаться в атмосфере в 5 раз быстрее скорости звука и в 25 раз в открытом космическом пространстве.
Skylon готовиться как космический самолет, способный выводить спутники на низкую орбиту. При этом это будет очень выгодная технология. По словам Алана Бонда, являющегося основателем компании, суммы, которые требуются для запуска спутников и других похожих миссий, могут уменьшиться сразу на 95% в том случае, если будет налажено коммерческое производство двигателей Sabre.
Принцип работы турбовентиляторного двигателя
Турбовентиляторный двигатель технологически очень сложное изделие, но работающее по довольно простому и понятному принципу. Расскажем, о его устройстве и какие процессы и как в нём протекают. Сначала разберёмся с терминами. Слово турбовентиляторный произошло от английского turbofan, причём англоязычный мир имеет под словом turbofan абсолютно любой двухконтурный турбореактивный двигатель.
При этом они разделяют их с низкой и высокой степенью двухконтурности соответственно, а степень двухконтурности – это параметр, который показывает отношение расхода массы воздуха через внешний контур к расходу во внутреннем. Итак, неотъемлемое свойство турбовентиляторного двигателя высокая степень двухконтурности – для современных изделий от 4 и выше.
Чтобы как можно больше воздуха расходовать через внешний контур используется вентилятор большого диаметра, энергия для его вращения появляется за счёт работы внутреннего контура и в этом заключается суть работы турбовентиляторного двигателя, где с помощью вентилятора создаётся около 80% всей тяги.
Рассмотрим типичное устройство и как это работает. Турбовентиляторный двигатель имеет внешний и внутренний контуры. На входе в двигатель имеется вентилятор большого диаметра, который подаёт воздух в оба контура, устройство внутреннего контура подобно обычному турбореактивному двигателю, который состоит из компрессора, турбины, камеры сгорания и реактивного сопла.
Сначала воздух, немного увеличив давление, после вентилятора попадает в компрессор низкого давления, затем он попадает в компрессор высокого давления, который вращается в несколько раз быстрее. После прохождения обоих компрессоров, воздух, сжатый более чем в 30 раз и сильно нагретый от высокого давления попадает в камеру сгорания. Здесь он смешивается с топливом, которое подаётся с помощью форсунок и поджигается. Далее раскалённый газ с температурой около 1600 градусов и выше начинает совершать полезную работу.
Сначала он попадает в турбину высокого давления, которая заставляет вращаться, находящийся с ней на одном валу компрессор высокого давления. Затем, потратив часть энергии и снизив свою температуру, раскаленный газ попадает в турбину низкого давления, которая находится на одном валу с компрессором и вентилятором. Потеряв большую часть энергии, раскалённый газ попадает в сопло и совершает последнее полезное действие – создаёт реактивную тягу. Таков принцип работы внутреннего контура, который создаёт лишь 20% всей тяги вентиляторного двигателя.
Принцип работы внешнего контура. Турбина низкого давления, находящаяся на одном валу с вентилятором, заставляет его вращаться, воздух, пройдя через лопатки вентилятора и немного увеличив своё давление, проходит через спрямляющий аппарат, его неподвижные лопатки поворачивают поток воздуха в осевом направлении, заодно повышая его давление. Затем воздушный поток попадает в сопло, где создаётся реактивная тяга.
Вот и весь принцип работы вентиляторного двигателя. Разумеется, каждый конкретный двигатель имеет свои особенности и различия, больше всего они касаются устройства внутреннего контура, но схема исполнения всегда остаётся плюс минус одинаковой. Обычно разница заключается в количестве ступеней компрессора и турбины, также помимо двухвальной схемы используется и трёхвальная, когда вентилятор и компрессор низкого давления больше не связаны, в таком случае используется промежуточная турбина, которая вращает только компрессор низкого давления на отдельном валу.
Ещё один способ увеличения эффективности конструкции – это установка редуктора на валу, который соединяет турбину низкого давления и вентилятор, такое решение позволяет им работать на оптимальных для себя режимах. Устройство внешнего контура также может иметь заметные отличия. При относительно небольшой степени двухконтурности в двигателе может использоваться смешение потоков, где газ из обоих контуров попадает в единую камеру сгорания и покидает через общее сопло.
Но, такая схема не подходит для более габаритных двигателей с высокой степенью двухконтурности, так как масса двигателя значительно вырастет, поэтому практически во всех вентиляторных двигателях потоки не смешиваются и длина внешнего контура всегда меньше внутреннего. Вот собственно и всё – таков принцип и способы повышения эффективности работы турбовентиляторного двигателя.
Источник
Ссылки
Твердотопливные ракеты: конфигурации
Читая описание для современных твердотопливных ракет, часто можно найти вот такое:
Здесь объясняется не только состав топлива, но и форма канала, пробуренного в центре топлива. «Перфорация в виде 11-конечной звезды» может выглядеть вот так:
Твердотопливные двигатели обладают тремя важными преимуществами:
- простота
- низкая стоимость
- безопасность
Но есть и два недостатка:
- тягу невозможно контролировать
- после зажигания двигатель нельзя отключить или запустить повторно
Недостатки означают, что твердотопливные ракеты полезны для непродолжительных задач (ракеты) или систем ускорения. Если вам понадобится управлять двигателем, вам придется обратиться к системе жидкого топлива.
Таможенные ограничения
Будущее ракетных двигателей
Мы привыкли видеть химические ракетные двигатели, которые сжигают топливо для производства тяги. Но есть масса других способов для получения тяги. Любая система, которая способна толкать массу. Если вы хотите ускорить бейсбольный мячик до невероятной скорости, вам нужен жизнеспособный ракетный двигатель. Единственная проблема при таком подходе — это выхлоп, который будет тянуться через пространство. Именно эта небольшая проблема приводит к тому, что ракетные инженеры предпочитают газы горящим продуктам.
Многие ракетные двигатели крайне малы. К примеру, двигатели ориентации на спутниках вообще не создают большую тягу. Иногда на спутниках практически не используется топливо — газообразный азот под давлением выбрасывается из резервуара через сопло.
Новые конструкции должны найти способ ускорить ионы или атомные частицы до высокой скорости, чтобы сделать тягу более эффективной. А пока будем пытаться делать электромагнитные двигатели и ждать, что там еще выкинет Элон Маск со своим SpaceX.
Источник
«Ни у одной страны нет подобных разработок»
По мнению академика Российской академии космонавтики Александра Железнякова, новый двигатель, как и его предшественник РД-171М, будет успешно конкурировать с зарубежными аналогами.
По его словам, продвижение этого двигателя на международном рынке связано с вопросами геополитики.
«Кроме Китая, вряд ли кто-то заинтересуется, поскольку это зависит от геополитической обстановки», — пояснил он.
Схожую точку зрения выразил и военный эксперт Михаил Тимошенко.
«Этот двигатель сможет конкурировать с иностранными разработками. США вряд ли будут заинтересованы в его покупке, потому что у них есть двигатель для тяжёлых ракет. Но интерес могут проявить Евросоюз и Китай, если, конечно, они захотят выводить на орбиту что-то тяжёлое», — сказал он RT.
- Ракета-носитель среднего класса «Союз-5» («Иртыш»)
В свою очередь, Моисеев заявил, что двигатель вряд ли пойдёт на экспорт, поскольку такие аппараты создаются под конкретные ракеты. Пока за рубежом нет ракет, совместимых с РД-171МВ.
«Для его покупки предполагаемый покупатель должен иметь соответствующую ракету. Им заинтересуются тогда, когда кто-то начнёт разрабатывать ракету, под которую он подойдёт, но пока таких ракет не разрабатывают и в планах ни у кого нет», — сказал эксперт.
Государственное устройство Бразилии
Согласно Конституции 1988 года, Бразилия – это федеративная республика. Ее глава — Президент, которого избирают на 4 года. Исполнительная власть принадлежит Президенту, Вице-президенту и Кабинету министров в составе 15 министров с председателем.
Двухпалатный бразильский парламент называется Национальный Конгресс, он состоит из Сената (81 сенаторов) и Палаты депутатов (513 депутатов).
Основные политические партии – «Партия трудящихся», «Партия бразильского демократического движения», «Бразильская социал-демократическая партия», «Демократическая партия», «Прогрессистская партия» и «Партия республики».
Административно страна делится на 26 штатов и один федеральный округ с центром в Бразилиа.
Электроракетный двигатель, сущность, устройство, принцип работы:
Электрический ракетный двигатель (электроракетный двигатель, ЭРД) – ракетный двигатель, принцип работы которого основан на преобразовании электрической энергии в направленную кинетическую энергию частиц. В таких двигателях в качестве источника энергии для создания тяги используется электрическая энергия бортовой энергоустановки космического аппарата.
По физике процессов электрический ракетный двигатель отличается от других разновидностей ракетных двигателей – от жидкостных и твердотопливных. Последние два используют химическую энергию.
Как и в обычном химическом ракетном двигателе в ЭРД также присутствует рабочее тело, которым выступает, как правило, газ (аргон, ксенон, аммиак, азот, гидразин и т.п.), иногда – жидкость, смеси жидкости и газа, жидкие металлы, пары металлов и твердые вещества (например, фторопласт), а также их смеси. Рабочее тело также истекает из сопла двигателя и создает тягу. В отличие от химического ракетного двигателя скорость истечения потока рабочего тела в ЭРД имеет высокое значение и составляет от 3 км/с и более. При этом верхняя граница скорости истечения частиц газа или другого рабочего тела неограниченна и по предварительным оценкам составляет порядка 210 км/с. Электрическая мощность ЭРД колеблется от сотен ватт до мегаватт. В настоящее время для электрических ракетных двигателей различных типов характерны следующие скорости истечения рабочего тела – от 10 до 60 км/с, электрическая мощность – от 0,8 до 7 КВт. КПД таких двигателей составляет порядка от 30 до 60%. Сам газ – рабочее тело (если в качестве рабочего тела используется газ) хранится в жидком виде.
В отличии от химическим двигателей электрические ракетные двигатели имеют исключительно высокий удельный импульс, составляющий до 100 км/с и более. Однако большой потребный расход энергии (1-100 кВт/Н тяги) и малое отношение тяги к площади поперечного сечения реактивной струи (не более 100 кН/м2) ограничивают максимальную целесообразную тягу ЭРД несколькими десятками ньютон. Недостатком электрических ракетных двигателей также является малое ускорение космического аппарата, которое составляет десятые или даже сотые доли ускорения свободного падения (g), что ограничивает применение таких двигателей только космическим пространством. Поэтому для запуска космического аппарата с Земли к другим планетам необходимо комбинировать обычные химические ракетные двигатели с электрическими.
Для ЭРД характерны малые размеры – порядка 0,1 м и более, а также масса порядка нескольких кг.
Рекомендации
Явление отдачи
Но научные поиски и разработки на этом не прекращались. Как всегда, на помощь пришла природа, которая, в большинстве случаев и наталкивает изобретателей на удивительные открытия.
Наблюдения за морскими жителями, такими как осьминоги, кальмары и каракатицы, привели к неожиданным результатам. Манера движения этих морских обитателей, была схожа с кратковременным толчком. Будто тело отталкивается отчего – то и продвигается вперед.
Эти наблюдения были чем-то схожи с замечаниями Гюегенса про выстрел и пушку, которые мы упоминали выше.
Таким образом, в физики появилось понятие «явление отдачи». В ходе дальнейших научных исследований было выяснено, что именно благодаря явлению отдачи происходит все движение на планете Земля: автомобиль отталкивается от земли, корабль – от воды и т.д.
Движение тел происходит благодаря передаче импульса от одного объекта другому. Для объяснения явления приведем простейший пример: вы решили толкнуть своего товарища в плечо, приложили определенную силу, в результате которой, он сдвинулся с места, но и вы испытали силу, отталкивающую вас в противоположную сторону.
Конечно, расстояние, на которое сдвинетесь вы и ваш друг, будет зависеть от ряда факторов: сколько вы весите, как сильно вы его толкнули.
Как устроены ракетные двигатели (3 минуты чтения и все понятно)
Плазменные ракетные двигатели
Плазменный двигатель — Электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы. Плазменные двигатели различной конструкции строились и тестировались начиная с 60-х годов, однако на начало 21 века существует лишь один проект плазменного двигателя — VASIMR, который реализуется на коммерческой основе. VASIMR пока что прошел лишь стендовые испытания, летные запланированы на 2016 год. Другие типы плазменных двигателей, в частности СПД и ДАС (двигатели с анодным слоем), очень к ним близкие, имеют совершенно другие принципы работы. Потенциал плазменных двигателей высок, однако, в ближайшем будущем единственным его применением будет корректировка орбиты МКС и других околоземных спутников.
Зачем нужен ядерный двигатель для космического корабля
Космическую эру человечество открыло в начале 1960-х г.г., и хотя с тех пор прошло уже 60 лет, несмотря на все успехи в деле изучения ближнего космоса, космический полет чуть дальше орбиты Луны воспринимается как задача чудовищной сложности. Почему так происходит и где те самые “караваны ракет” летящие к далеким мирам?
Техника подвела! Дело в том, что фактически сейчас мы используем такие же точно двигатели, как и на заре космонавтики. Нет, конечно с технической точки зрения современные двигатели мощнее, экономичнее и лучше старых, но существуют у них ограничения, которые до сих пор мы обойти не можем.
Пока у человечества не будет новых мощных двигателей, о далеких планетах остается только мечтать
В чем же дело? Вот в чем: жидкостные ракетные двигатели открыли человеку дорогу в космос – на околоземные орбиты. Но дальше двигаться на этой энергетической базе просто не имеет смысла: скорость истечения реактивной струи в них не превышает 4,5 км/с, а для межпланетных полетов нужны десятки километров в секунду.
Иными словами, мы имеем дело с классическим технологическим пределом, преодолеть который нельзя. Если, конечно, не создать принципиально иной двигатель для космических перелетов, например – ядерный!
Принцип работы реактивного двигателя
В реактивных двигателях струи воздушных потоков, которые попадают в двигатели, встречаются с обращающимися с колоссальной скоростью турбинами компрессоров, которые засасывают воздух из окружающей среды (при помощи встроенных вентиляторов). Следовательно, происходит решение двух задач:
- Первичное забирание воздуха;
- Охлаждение в целом всего двигателя.
Это могут быть, в частности, смеси воздуха и керосина, как в турбореактивных двигателях современных реактивных самолетах, либо смеси жидкого кислорода и спирта, такими обладают кое-какие жидкостные ракетные двигатели, либо еще какое-то твердое топливо в пороховых ракетах. Как только образовалась топливно-воздушная смесь, происходит ее воспламенение с выделением энергии в виде тепла. Таким образом, топливом в реактивных двигателях могут быть только такие вещества, которые в результате химических реакций в двигателях (при возгорании) выделяют тепло, при этом образуя множество газов.
При возгорании совершается существенное разогревание смеси и деталей вокруг с объемным расширением. Собственно говоря, реактивные двигатели пользуются для продвижения управляемыми взрывами. Камеры сгорания в реактивных двигателях — это одни из самых горячих элементов (температурный режим в них может достигать до 2700 °С), и они требуют постоянного интенсивного охлаждения.
Турбореактивные двигатели функционируют несколько иначе. Так, газы, после камер сгорания, вначале проходят турбинами, которым отдают свою тепловую энергию. Это делается для того, чтобы привести в движение компрессоры, которые послужат для сжатия воздуха перед камерой сгорания. В любом случае, сопла остаются последними частями двигателей, через которые протекут газы. Собственно они и формируют непосредственно реактивную струю.
В сопла направляют холодный воздух, который нагнетается при помощи компрессоров, чтобы охлаждать внутренние детали двигателей. Реактивные сопла могут обладать различными конфигурациями и конструкциями исходя из разновидностей двигателей. Так, когда скорость проистекания должна быть выше скорости звука, тогда соплам придаются формы расширяющихся труб или же вначале суживающиеся, а далее расширяющиеся (так называемые сопла Лаваля). Только с трубами такой конфигурации газы разгоняются до сверхзвуковых скоростей, при помощи чего реактивные самолеты перешагивают «звуковые барьеры».
Исходя из того, задействуется ли в процессе работы реактивных двигателей окружающая среда, они подразделяются на основные классы воздушно-реактивных двигателей (ВРД) и ракетных двигателей (РД). Все ВРД являются тепловыми двигателями, рабочие тела которых образуются тогда, когда происходит реакция окисления горючих веществ с кислородом воздушных масс. Поступающие из атмосферы воздушные потоки составляют основу рабочих тел ВРД. Таким образом, аппараты с ВРД несут на борту источники энергии (топливо), но большая часть рабочих тел черпается из окружающей среды.
К аппаратам ВРД относятся:
- Турбореактивные двигатели (ТРД);
- Прямоточные воздушно-реактивные двигатели (ПВРД);
- Пульсирующие воздушно-реактивные двигатели (ПуВРД);
- Гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД).
Потребность пока невысокая, зато разговоров хватает
Амфибийная специфичность самолета стала причиной его малой востребованности. Исключение составляет только противопожарный вариант. Семь противопожарных Бе-200ЧС в 1997 году заказало Министерство по чрезвычайным ситуациям России. Сейчас у ведомства шесть машин, поскольку первая из серии была снята с эксплуатации и отправлена на ремонт в Таганрог. Многочисленные и мощные лесные пожары аномально жаркого лета 2010-го заставили министерство удвоить заказ – было принято решение о закупке еще восьми Бе-200ЧС на сумму 12 миллиардов рублей. Планировалось, что поставки будут завершены до конца 2013 года.
Бывший министр обороны Анатолий Сердюков в прошлом году принял решение о приобретении восьми таких самолетов-амфибий на 14 миллиардов рублей. По словам генерального директора ТАНТК Виктора Кобзева, первый гидросамолет Бе-200 из армейской партии будет поставлен в 2014 году, а завершить поставки планируется в течение двух лет. Две машины заказчик должен получить в противопожарном варианте, четыре – в поисково-спасательном, еще два самолета – для выполнения специальных задач ВМФ России. О подписании твердого контракта пока не сообщалось.
Единственным иностранным покупателем Бе-200 пока остается Азербайджан, купивший один самолет в 2008 году. Зарубежных заказчиков, безусловно, останавливает чрезвычайно высокая цена (1,5 миллиарда рублей в базовой комплектации) для машины такого класса, которая предлагается на международный рынок в противопожарном варианте. Ведь необходимость пожаротушения носит сезонный и весьма ограниченный характер. Поэтому иностранцы предпочитают брать Бе-200 в аренду и экономить таким образом очень серьезные деньги. Ситуация повторяется раз за разом. Начиная с 2005 года самолеты МЧС привлекались для тушения пожаров в Италии, Португалии, Индонезии, Греции, Израиле, Хорватии и Сербии.
Однако иностранных заказов нет, хотя деклараций о намерениях хватает. Как утверждают в Рособоронэкспорте, имеется около 50 запросов на получение информации о Бе-200, среди них индийский о возможной покупке шести экземпляров. В настоящее время Министерство лесного хозяйства Китая ведет консультации с российскими представителями о возможности поставок самолета в противопожарном варианте.
Желание приобрести десять российских самолетов-амфибий (в ночном варианте) высказал и Пентагон. В следующем году во Флориде Бе-200 примет участие в военно-морских учениях, по итогам которых будет принято окончательное решение. Впрочем, испытания противопожарного варианта самолета прошли в Соединенных Штатах неудачно. Эксперты Службы лесной охраны США заключили, что в Бе-200 необходимо усовершенствовать систему сброса воды.
На авиасалоне «Фарнборо-2012» ОАО «Рособоронэкспорт» и три компании, входящие в итальянский холдинг Finmeccanica – SELEX Galileo, SELEX Elsag и WASS, подписали несколько соглашений о совместной разработке и модернизации патрульного самолета для продажи в третьи страны. Базовой платформой этого авиапроекта, по некоторым сообщениям, может стать Бе-200. На российские модели будут устанавливаться итальянские системы связи, навигации и системы опознавания «свой-чужой». Кроме того, новые патрульные самолеты получат итальянские системы вооружения, включая легкие торпеды производства компании WASS.
Твердотопливные ракеты: конфигурации
Читая описание для современных твердотопливных ракет, часто можно найти вот такое:
Здесь объясняется не только состав топлива, но и форма канала, пробуренного в центре топлива. «Перфорация в виде 11-конечной звезды» может выглядеть вот так:
Твердотопливные двигатели обладают тремя важными преимуществами:
- простота
- низкая стоимость
- безопасность
Но есть и два недостатка:
- тягу невозможно контролировать
- после зажигания двигатель нельзя отключить или запустить повторно
Недостатки означают, что твердотопливные ракеты полезны для непродолжительных задач (ракеты) или систем ускорения. Если вам понадобится управлять двигателем, вам придется обратиться к системе жидкого топлива.