Взрыв

Содержание

Примечания

  1. . Министерство обороны Российской Федерации (Минобороны России). Дата обращения: 20 июля 2020.
  2. Андреев К.К. Взрыв и взрывчатые вещества —М.: Военное издательство Министерства Обороны Союза ССР, 1956 с. 5
  3. Взрывное превращение//Горная энциклопедия. Том 1. Аа-лава-геосистема — М.: Советская энциклопедия, 1984
  4. Гельфанд Б. Е., Сильннков М. В. Взрывобезопасность: учебник — СПб.: Астерион, 2006
  5. Девисилов В. А., Дроздова Т. И., Тимофеева С. С. Теория горения и взрыва : практикум : учебное пособие — М.: Форум, 2012
  6. Водяник В.И. Горение и взрыв газов//Безопасность труда в промышленности N 1, 2005
  7. ↑ Д. З. Хуснутдинов, А. В. Мишуев, В. В. Казеннов и др. Аварийные взрывы газовоздушных смесей в атмосфере : монография — М.: МГСУ, 2014
  8. Бейкер У. и др. Взрывные явления. Оценка и последствия т. 1 — М.: «Мир», 1986
  9. Овчаренко Н. Л. Предупреждение взрывов в доменных и сталеплавильных цехах — М., 1963
  10. Взрывное горение//Горная энциклопедия. Том 1. Аа-лава-геосистема — М.: Советская энциклопедия, 1984
  11. ↑ Взрыв//Горная энциклопедия. Том 1. Аа-лава-геосистема — М.: Советская энциклопедия, 1984
  12. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: Учеб. пособ.: Для вузов. В 10 т. Т. VI. Гидродинамика. — 5-е изд., стереот. — М.: ФИЗМАТЛИТ, 2001.
  13. ↑ Таубкин И. С. О терминологии в уголовно-правовой классификации взрывов//Теория и практика судебной экспертизы №1 (29) 2013
  14. Покровский Г. И. Взрыв и его действие — М., 1954

Состав

Существуют два больших класса взрывчатых веществ — индивидуальные и композитные.

Индивидуальные представляют собой химические соединения, способные к внутримолекулярному окислению. При этом молекула вовсе не должна содержать в своем составе кислород — достаточно, чтобы одна часть молекулы передала электрон другой ее части с положительным тепловым выходом.

Энергетически молекулу такого взрывчатого вещества можно представить как шарик, лежащий в углублении на вершине горы. Он будет спокойно лежать до передачи ему некоторого сравнительно небольшого импульса, после чего скатится по склону горы, выделив при этом энергию, значительно превышающую затраченную.

Фунт тротила в заводской упаковке и аммоналовый заряд массой 20 килограмм.

К индивидуальным взрывчатым веществам относятся тринитротолуол (он же тротил, тол, ТНТ), гексоген, нитроглицерин, фульминат ртути (гремучая ртуть), азид свинца.

Композитные состоят из двух и более веществ, не связанных между собой химически. Иногда компоненты таких взрывчаток сами по себе не являются способными к детонации, а проявляют эти свойства при реакции между собой (обычно речь идет о смеси окислителя и восстановителя). Характерный пример такого двухсоставного композита — оксиликвит (пористое горючее вещество, пропитанное жидким кислородом).

Композиты могут состоять и из смеси индивидуальных взрывчатых веществ с добавками, регулирующими чувствительность, фугасность и бризантность. Такие добавки могут как ослаблять взрывные характеристики композитов (парафин, церезин, тальк, дифениламин), так и усиливать их (порошки различных химически активных металлов — алюминия, магния, циркония). Кроме того, существуют стабилизирующие добавки, увеличивающие срок хранения готовых взрывных зарядов, и кондиционные, доводящие взрывчатое вещество до требуемого физического состояния.

В связи с развитием и распространением мирового терроризма ужесточились требования к контролю над взрывчатыми веществами. В состав современных взрывчаток в обязательном порядке вводятся химические маркеры, обнаруживаемые в продуктах взрыва и однозначно указывающие на производителя, а также пахучие вещества, помогающие в обнаружении взрывных зарядов служебными собаками и приборами газовой хроматографии.

Ссылки[править]

Виды взрывов

Физический процесс, при котором в течение короткого промежутка времени происходит освобождение огромного количества энергии, называют ядерным взрывом. В зависимости от целей и задач, преследуемых использованием ядерного боеприпаса, различают несколько основных видов взрыва. Классификация видов ядерных взрывов и их характеристик, выглядит следующим образом:

  1. Высотный. Применяется для поражения космических и воздушных целей, а также для создания активных помех средствам радиотехнического контроля обстановки. Боеприпас подрывается выше границы тропосферы, то есть на высоте более 10 000 метров.
  2. Воздушный. Этот вид ядерного взрыва направлен на поражение наземных и воздушных объектов и производится на высоте, не превышающей 10 километров.
  3. Наземный или надводный взрыв производится с целью уничтожения складских и портовых сооружений, подземных бункеров и разрушения укрепленных надводных и наземных объектов.
  4. Подводный (подземный) взрыв. Производится посредством подрыва заранее заложенного боеприпаса или при помощи боеголовок, проникающих в толщу воды или грунта. Направлен на уничтожение портовых и гидротехнических объектов, разрушения плотин, устройств горных завалов. Основным поражающим фактором ядерного взрыва этого вида являются гравитационные волны, разрушающие береговую инфраструктуру.

Таким образом, существующая классификация взрывов атомных боеприпасов, позволяет определять их зависимость от выполнения конкретных задач.

Разбудить демона

Как ни забавно, у «родственника» пикриновой кислоты — тринитротолуола — судьба оказалась сходной. Впервые он был получен немецким химиком Вильбрандом еще в 1863 году, но лишь в начале XX века нашел применение в качестве взрывчатого вещества, когда за его исследование взялся немецкий инженер Генрих Каст

В первую очередь он обратил внимание на технологию синтеза тринитротолуола — она не содержала опасных по взрыву этапов. Уже одно это было колоссальным преимуществом

Еще свежи были в памяти европейцев многочисленные ужасающие взрывы фабрик, производивших нитроглицерин.

Трехмерная модель молекулы тринитротолуола.

Еще одним немаловажным достоинством была химическая инертность тринитротолуола — реакционная способность и гигроскопичность пикриновой кислоты изрядно досаждали конструкторам артиллерийских снарядов.

Полученные Кастом желтоватые чешуйки тринитротолуола проявили удивительно мирный нрав — настолько мирный, что многие сомневались в его способности к детонации. Сильные удары молотком плющили чешуйки, в огне тринитротолуол взрывался не лучше, чем березовые дрова, а горел гораздо хуже. Доходило до того, что в мешки с тринитротолуолом пытались стрелять из винтовок. Результатом были лишь облачка желтой пыли.

Но способ разбудить дремлющего демона был найден — впервые это произошло при подрыве мелинитовой шашки вплотную к массе тринитротолуола. А затем выяснилось, что если его сплавить в монолитный блок, то надежная детонация обеспечивается стандартным капсюлем-детонатором Нобеля №8. В остальном плавленый тринитротолуол оказался таким же флегматиком, как и до плавления. Его можно пилить, сверлить, прессовать, размалывать — словом, делать что заблагорассудится. Температура плавления 80°С чрезвычайно удобна с технологической точки зрения — на жаре не потечет, но и особых затрат на плавление не требует. Расплавленный тринитротолуол весьма текуч, его можно запросто заливать в корпуса снарядов и бомб через отверстие взрывателя. В общем, воплощенная мечта военных.

Под руководством Каста в 1905 году Германия получила первые сто тонн новой взрывчатки. Как и в случае с французским мелинитом, она была строго засекречена и носила ничего не значащее название «тротил». Но спустя всего лишь год стараниями российского офицера В. И. Рдултовского тайна тротила была раскрыта, и его стали изготавливать в России.

Еще тесты

Степень опасности

Также в качестве примера можно рассмотреть взрывоопасные вещества по степени их опасности. На первом месте находятся газы на основе углеводорода. Данные вещества склонны к произвольной детонации. К ним относятся хлор, аммиак, фреоны и так далее. Согласно статистике, почти треть происшествий, в которых основными действующими лицами выступают взрывоопасные вещества, связаны с газами на основе углеводорода.

Дальше следует водород, который в определенных условиях (например, соединение с воздухом в соотношении 2:5) приобретает наибольшую взрывоопасность. Ну и замыкают эту тройку лидеров по степени опасности пары жидкостей, которые склонны к воспламенению. Прежде всего, это пары мазута, дизельного топлива и бензина.

Физическое состояние

Американская бомба BLU-82/B содержит 5700 кг аммонала. Это одна из самых мощных неядерных бомб.

Эта классификация весьма обширна. Она включает в себя не только три состояния вещества (газ, жидкость, твердое тело), но и всевозможные дисперсные системы (гели, суспензии, эмульсии). Типичный представитель жидких взрывчатых веществ — нитроглицерин — при растворении в нем нитроцеллюлозы превращается в гель, известный как «гремучий студень», а при смешивании этого геля с твердым абсорбентом образуется твердый динамит.

Так называемые «гремучие газы», то есть смеси водорода с кислородом или хлором, практически не используются ни в промышленности, ни в военном деле. Они крайне нестабильны, обладают исключительно высокой чувствительностью и не позволяют производить точное взрывное воздействие. Существуют, однако, так называемые боеприпасы объемного взрыва, к которым военные проявляют большой интерес. Они не попадают в категорию газообразных взрывчатых веществ, но достаточно близки к ней.

Большинство современных промышленных составов — водные суспензии композитов, состоящих из аммиачной селитры и горючих компонентов. Такие составы очень удобны для транспортировки к месту проведения взрывных работ и заливки в шпуры. А широко распространенные составы Шпренгеля хранятся раздельно и готовятся непосредственно на месте применения в необходимом количестве.

Взрывчатые вещества военного применения, как правило, твердые. Всемирно известный тринитротолуол плавится без разложения и потому позволяет создавать монолитные заряды. А не менее известные гексоген и ТЭН при плавлении разлагаются (иногда с взрывом), поэтому заряды из таких взрывчатых веществ формируются прессованием кристаллической массы во влажном состоянии с последующим высушиванием. Аммониты и аммоналы, используемые при снаряжении боеприпасов, обычно гранулируют для облегчения засыпки.

Посол Индии рассказал о ходе переговоров о закупке у России МиГ-29 и Су-30

Структурирование Вселенной

Вот что произошло за 14 миллиардов лет.

В последующие несколько миллиардов лет более плотные регионы почти равномерно распределенной во Вселенной материи начали притягиваться друг к другу. В результате этого они стали еще плотнее, начали образовывать облака газа, звезды, галактики и другие астрономические структуры, за которыми мы можем наблюдать в настоящее время. Этот период носит название иерархической эпохи. В это время та Вселенная, которую мы видим сейчас, начала приобретать свою форму. Материя начала объединяться в структуры различных размеров — звезды, планеты, галактики, галактические скопления, а также галактические сверхскопления, разделенные межгалактическими перемычками, содержащими всего лишь несколько галактик.

Детали этого процесса могут быть описаны согласно представлению о количестве и типе материи, распределенной во Вселенной, которая представлена в виде холодной, теплой, горячей темной материи и барионного вещества. Однако современной стандартной космологической моделью Большого взрыва является модель Лямбда-CDM, согласно которой частицы темной материи двигаются медленнее скорости света. Выбрана она была потому, что решает все противоречия, которые появлялись в других космологических моделях.

Согласно этой модели на холодную темную материю приходится около 23 процентов всей материи/энергии во Вселенной. Доля барионного вещества составляет около 4,6 процента. Лямбда-CDM ссылается на так называемую космологическую постоянную: теорию, предложенную Альбертом Эйнштейном, которая характеризует свойства вакуума и показывает соотношение баланса между массой и энергией как постоянную статичную величину. В этом случае она связана с темной энергией, которая служит в качестве акселератора расширения Вселенной и поддерживает гигантские космологические структуры в значительной степени однородными.

Операторы

Взрывчатый краситель

В 1868 году британскому химику Фредерику-Августу Абелю после шестилетних исследований удалось получить прессованный пироксилин. Однако в отношении тринитрофенола (пикриновой кислоты) Абелю была отведена роль «авторитетного тормоза». Еще с начала XIX века были известны взрывчатые свойства солей пикриновой кислоты, но о том, что сама пикриновая кислота способна к взрыву, никто не догадывался до 1873 года. Пикриновая кислота на протяжении века использовалась как краситель. В те времена, когда началось оживленное испытание взрывчатых свойств разных веществ, Абель несколько раз авторитетно заявлял о том, что тринитрофенол абсолютно инертен.

Трехмерная модель молекулы тринитрофенола.

Герман Шпренгель был немцем по происхожде-нию, но жил и работал в Великобритании. Именно он дал французам воз-можность заработать денег на секретном мелините.

В 1873 году немец Герман Шпренгель, создавший целый класс взрывчатых веществ, убедительно показал способность тринитрофенола к детонации, но тут возникла другая сложность — прессованный кристаллический тринитрофенол оказался очень капризным и непредсказуемым — то не взрывался, когда надо, то взрывался, когда не надо.

Пикриновая кислота предстала перед французской Комиссией по взрывчатым веществам. Было установлено, что она — мощнейшее бризантное вещество, уступающее разве только нитроглицерину, но ее слегка подводит кислородный баланс. Также выяснили, что сама пикриновая кислота обладает низкой чувствительностью, а детонируют ее соли, образующиеся при длительном хранении. Эти исследования положили начало полному перевороту во взглядах на пикриновую кислоту. Окончательно недоверие к новому взрывчатому веществу было рассеяно работами парижского химика Тюрпена, который показал, что плавленая пикриновая кислота неузнаваемо меняет свои свойства по сравнению с прессованной кристаллической массой и совершенно теряет свою опасную чувствительность.

Это интересно: позже выяснилось, что сплавлением решаются проблемы с детонацией у сходной с тринитрофенолом взрывчатки — тринитротолуола.

Такие исследования, разумеется, были строго засекречены. И в восьмидесятые годы XIX века, когда французы стали выпускать новое взрывчатое вещество под названием «мелинит», Россия, Германия, Великобритания и США проявили к нему огромный интерес. Ведь фугасное действие боеприпасов, снаряженных мелинитом, выглядит внушительным и в наши дни. Активно заработали разведки, и спустя недолгое время тайна мелинита стала секретом Полишинеля.

В 1890 году Д. И. Менделеев писал морскому министру Чихачеву: «Что же касается до мелинита, разрушительное действие коего превосходит все данные испытания, то по частным источникам с разных сторон однородно понимается, что мелинит есть не что иное, как сплавленная под большим давлением остывшая пикриновая кислота».

Оценка степени повреждения отдельно стоящих зданий

Под воздействием ударной волны здания и сооружения ведут себя как упругие колебательные системы. Расчетная оценка такого воздействия требует решения достаточно сложных динамических задач, связанных с описанием поведения упругих конструктивных элементов зданий и сооружений под воздействием ударных нагрузок, определяемых изменяющимися во времени и пространстве параметрами ударной волны. Возникающие в конструктивных элементах нагрузки зависят от параметров волны, характеристик объекта, его размеров и ориентации относительно фронта волны.

Наиболее точную оценку последствий воздействия ударной волны на конкретный объект позволяет получить эксперимент, проводимый на его макете с соблюдением правил подобия. Однако применение экспериментальных методов оценки далеко не всегда возможно.

Накопленный опыт исследования объектов, подвергавшихся воздействию взрывов, и результатов экспериментов с макетами выявил ряд закономерностей, позволяющих упрощенными методами оценивать возможные ожидаемые последствия воздействия взрывов на здания и сооружения. Ниже будут рассмотрены два метода: по допустимому давлению при взрыве и по диаграмме разрушения объекта.

По допустимому давлению при взрыве

Избыточные давления, при которых наступают различные степени разрушений одного из возможных типов зданий, приведены в Таблице 5. При использовании таблицы следует иметь ввиду, что она соответствует ударной волне ядерного взрыва, т.е. учитывает воздействие на объект только избыточного давления и не учитывает поражающее действие импульса. Для других видов взрывов, например для взрывов конденсированных ВВ или ГВС, значения давлений, приведенных в таблице, должны быть увеличены в 1.5 раза и более в зависимости от мощности взрыва и после этого сопоставлены со значениями избыточного давления. рассчитанными по формуле (5). При использовании таблицы следует иметь ввиду, что результат оценки будет приблизительным, поскольку не учитывается действие импульса.

Тактико-технические характеристики Фаустпатрона

Трициклическая мочевина

2.5. Боеприпасы объемного взрыва

Предназначены для поражения ударной волной и огнем живой силы, сооружений и техники противника. Источником энергии являются смеси метилацетина, пропадеина и пропана с добавкой бутана или смеси на основе окиси пропилена (этилена) и различных видов жидкого топлива.

Принцип действия такого боеприпаса заключается в следующем: жидкое топливо, обладающее высокой теплотворной способностью (окись этилена, диборан, перекись уксусной кислоты, пропилнитрат), помещенное в специальную оболочку, при взрыве разбрызгивается, испаряется и перемешивается с кислородом воздуха, образуя сферическое облако топливно-воздушной смеси радиусом около 15 м и толщиной слоя 2-3 м. Образовавшаяся смесь подрывается в нескольких местах специальными детонаторами. В зоне детонации за несколько десятков микросекунд развивается температура 2500-3000°С. В момент взрыва внутри оболочки из топливно-воздушной смеси образуется относительная пустота – безжизненное пространство размером с футбольное поле (поэтому объёмно-детонирующие боеприпасы называют «вакуумными бомбами»).

Рис. 2.6. Применение боеприпасов объёмного взрыва

Основным поражающим фактором боеприпаса объёмного взрыва является ударная волна. В то же время резко возрастает температура воздуха, создается обедненная кислородом, отравленная продуктами сгорания обширная область атмосферы.

Боеприпасы объемного взрыва по своей мощности занимают промежуточное положение между ядерными и обычными (фугасными) боеприпасами. По своей разрушительной способности такой боеприпас может быть сравним с тактическим ядерным боеприпасом. Избыточное давление во фронте ударной волны боеприпаса объёмного взрыва даже на удалении 100 м от центра взрыва может достигать 100 кПа (1 кгс/см²).

Бомбы объемного взрыва испытаны американцами еще в 1969 г. во Вьетнаме.

Неоднократно боеприпасы объемного взрыва применялись в различных войнах 1980-90 годов. Так 6 августа 1982 года в период войны в Ливане израильский самолет сбросил такую бомбу (американского производства) на восьмиэтажный жилой дом. Взрыв произошел в непосредственной близости от здания на уровне 1-2 этажа. Здание было полностью разрушено. Погибло около 300 человек (в основном не в здании, а находившиеся поблизости от места взрыва).

В августе 1999 года в период агрессии Чечни против Дагестана на дагестанский аул Тандо, где скопилось значительное число чеченских боевиков, была сброшена крупнокалиберная бомба объемного взрыва. Захватчики понесли огромные потери. В последующие дни одно только появление одиночного (именно одиночного) штурмовика Су-25 над каким либо населенным пунктом заставляло боевиков спешно покидать аул. Появился даже термин «эффект Тандо».

Поскольку топливно-воздушная смесь боеприпасов объемного взрыва легко растекается и способна проникать в негерметичные помещения, а также формироваться в складках местности, простейшие защитные сооружения от них спасти не могут. Защита людей обеспечивается только укрытием в защитных сооружениях. Убежища должны работать в режиме полной изоляции.

Возникающая в результате взрыва ударная волна вызывает у людей такие поражения, как контузия головного мозга, множественные внутренние кровотечения вследствие разрыва соединительных тканей внутренних органов (печени, селезенки), разрыв барабанных перепонок уха.

Высокая поражающая способность, а также неэффективность существующих мер защиты от боеприпасов объемного взрыва послужили основанием для того, чтобы Организация Объединенных Наций квалифицировала такое оружие как негуманное средство ведения войны, вызывающее чрезмерные страдания людей. На заседании чрезвычайного комитета по обычным вооружениям в Женеве был принят документ, в котором такие боеприпасы признаны видом оружия, требующим запрещения международным сообществом.

Методы защиты космических аппаратов от столкновений с космическим мусором

Страницы

Источники энергии

Взрывное превращение — быстрый самостоятельно распространяющийся процесс с выделением энергии и образованием сильно сжатых газов, способных производить работу, возникает из-за химических и ядерных реакций. В результате взрывного превращения в окружающей среде возникает волна сжатия. Такие волны также сопровождают взрывы, не сопровождающиеся взрывным превращением, — физические взрывы сосудов под давлением, наполненных негорючими газами, паром или многофазными сжимаемыми системами (пыль, пена). Физико-химический взрыв паров вскипающей жидкости (BLEVE) происходит в результате внешнего подогрева сосуда, наполненного горючей легкокипящей жидкостью. При разрыве емкости и последующем воспламенении паров кипящей жидкости происходит образование огненного шара. В зависимости от источников энергии существуют также электрические, вулканические взрывы, взрывы при столкновении космических тел (например, при падении метеоритов на поверхность планеты), взрывы, вызванные гравитационным коллапсом (взрывы сверхновых звёзд и др.).

Точечными взрывами являются взрывы вещества, занимающего малый объем относительно зоны воздействия, например — заряд взрывчатого вещества. Объёмным взрывом является взрыв газо-, паро-, пылевоздушного облака, занимающего значительный объем зоны воздействия. При взрыве облака возникает огненный шар.

Размножение

Что такое взрыв

Взрыв определяют как внезапную реакцию окисления или разложения с повышением температуры, давления или обоих этих параметров одновременно. Это относится к химической реакции, которая при одновременном контакте и в определённом соотношении кислорода (воздуха), горючего материала и источника воспламенения вызывает резкое повышение температуры и давления. Если возникающее тепло не может быть отведено достаточно быстро, происходит внезапное объёмное расширение сопутствующих газов и выделение большого количества тепловой энергии, сопровождаемое волной давления — взрывом.

Угроза взрыва

Чтобы произошел взрыв, одновременно должны присутствовать следующие факторы:

  • наличие легковоспламеняющегося материала в производственном процессе или в окружающей среде;
  • кислород (воздух);
  • источник возгорания;
  • определённое соотношение кислорода и горючего материала.

К легковоспламеняющимся материалам относятся пары, взвеси, газы, пыль. Они могут появиться в результате утечки в процессе производства, а также при транспортировке или хранении. Пыль от материалов, которые измельчаются для дальнейшей обработки, особенно распространена в промышленных зонах. Взрывы пыли могут иметь такие же разрушительные последствия, как и взрывы газа.

Горючие материалы, контактируя с кислородом, воспламеняются только в определенном соотношении и при наличии источника возгорания. Решающую роль здесь играют температура вспышки материала и предел его взрыва.

Температура вспышки — низший температурный предел для горючих жидкостей, при котором образуется паровоздушная смесь. Для такой гибридной смеси соотношение концентраций определяет, может ли образоваться взрывоопасная атмосфера. Это описывает пределы взрываемости отдельных материалов: каждый горючий материал имеет определенный диапазон в виде смеси с кислородом, в которой может произойти взрыв. Как при слишком высоких, так и при чрезмерно низких концентрациях происходит не взрыв, а стационарная реакция, или горение вообще отсутствует. Смесь взрывоопасна только при воспламенении в диапазоне между верхним и нижним пределами взрываемости.

Пределы взрываемости зависят от давления, температуры и концентрации кислорода. Кроме того, существуют химически нестабильные, или пирофорные вещества (цезий, рубидий, белый фосфор), которые воспламеняются только при контакте с кислородом или воздухом

В обращении с ними требуется особая осторожность.

Это касается и пылевых скоплений, опасность самовозгорания которых возрастает с увеличением толщины их слоя. Изолирующий эффект пыли может вызвать аккумуляцию тепла, что приведет к самовозгоранию.

Причины взрывов

Взрывоопасные ситуации могут возникать повсюду, где имеются необходимые и достаточные для этого условия: на производственных предприятиях, объектах инфраструктуры, в жилых помещениях.

К самым распространённым причинам взрывов относятся:

  • нарушение технологических процессов на производствах;
  • несоблюдение правил хранения, перевозки горючих материалов и техники безопасности при работе с ними;
  • неправильная эксплуатация или поломка газового, парового оборудования.

Отдельно следует назвать причиной взрывов преднамеренное использование поражающих боеприпасов и оружия в военных, террористических и противоправных действиях.

Форма работы взрыва

Нож кукри чертежи с размерами

Ссылки

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector