Нейтронное оружие это разновидность ядерного оружия, у которого искусственно увеличена доля энергии взрыва, выделяющаяся в виде нейтронного излучения.

История

Работы над нейтронным оружием в виде авиационной бомбы, боеголовки ракеты, снаряда особой мощности и других вариантов реализации велись в нескольких странах с 1950-х годов (в США и англоязычных странах по аналогии с другими типами бомб особой мощности нейтронную бомбу именовали для краткости N-bomb), по нескольким основным направлениям исследований, которые представляли наибольший интерес для военных:

  • по созданию нейтронных боевых частей для противоракет заатмосферного перехвата, провоцирующих преждевременную детонацию ядерной боевой части ракеты противника на безопасном удалении от обороняемой территории (на околоземной орбите);
  • по созданию специфического оружия для поражения лиц высшего военно-политического руководства противника, находящихся в построенных глубоко под землёй или в скальных грунтах взрывостойких бункерах со стенами и потолками из нескольких метров железобетона, которые не под силу для уже имеющихся в арсенале средств и которые не представляется возможным разрушить взрывом водородной бомбы;
  • по созданию оружия направленной энергии как средства нейтрализации военной техники противника, воздействующих не на саму военную технику («железо»), а на её электронику, выводя её из строя;
  • по созданию более мощных средств поражения живой силы и населения с сохранением материальной инфраструктуры и более коротким периодом полураспада микрочастиц радиоактивных продуктов взрыва для безопасности собственных войск и обеспечения возможности воспользоваться инфраструктурой занятых территорий вскоре после применения оружия первого удара.

Эксперименты долгое время не доходили до стадии производства серийных нейтронных боеприпасов. Впервые технология его производства была разработана в США во второй половине 1970-х. Сейчас технологией производства такого оружия обладают также Россия, Франция и Китай. В России также созданы и нейтронные пушки[источник не указан 1001 день].

В основе деления и синтеза

Десятилетия, прошедшие после печальных событий начала августа 1945 года — взрывов американских атомных бомб над японскими городами Хиросима и Нагасаки, — подтвердили правоту ученых, давших в руки политиков небывалое оружие нападения и возмездия. Двух боевых применений вполне хватило для того, чтобы мы смогли прожить 60 лет, обходясь в военных действиях без применения ядерного оружия. И очень хочется надеяться на то, что данный вид оружия так и останется главным сдерживающим фактором новой мировой войны и никогда не будет применен по боевому назначению.

Ядерное оружие определяют как «оружие массового поражения взрывного действия, основанное на использовании энергии, выделяющейся при ядерных реакциях деления или синтеза». Соответственно ядерные заряды разделяют на ядерные и термоядерные. Пути освобождения энергии атомного ядра с помощью деления или синтеза были понятны физикам уже к концу 1930-х годов. Первый путь предполагал цепную реакцию деления ядер тяжелых элементов, второй — слияние ядер легких элементов с образованием более тяжелого ядра. Мощность ядерного заряда обычно выражают через «тротиловый эквивалент», то есть количество обычного взрывчатого вещества тротила, которое нужно взорвать, чтобы высвободилась такая же энергия. Одна ядерная бомба может быть эквивалентна по такой шкале миллиону тонн тротила, однако последствия от ее взрыва могут оказаться гораздо хуже, чем от взрыва миллиарда тонн обычной взрывчатки.

История

Работы над нейтронным оружием в виде авиационной бомбы, боеголовки ракеты, снаряда особой мощности и других вариантов реализации велись в нескольких странах с 1950-х годов (в США и англоязычных странах по аналогии с другими типами бомб особой мощности нейтронную бомбу именовали для краткости N-bomb), по нескольким основным направлениям исследований, которые представляли наибольший интерес для военных:

  • по созданию нейтронных боевых частей для противоракет заатмосферного перехвата, провоцирующих преждевременную детонацию ядерной боевой части ракеты противника на безопасном удалении от обороняемой территории (на околоземной орбите);
  • по созданию специфического оружия для поражения лиц высшего военно-политического руководства противника, находящихся в построенных глубоко под землёй или в скальных грунтах взрывостойких бункерах со стенами и потолками из нескольких метров железобетона, которые не под силу для уже имеющихся в арсенале средств и которые не представляется возможным разрушить взрывом водородной бомбы;
  • по созданию оружия направленной энергии как средства нейтрализации военной техники противника, воздействующих не на саму военную технику («железо»), а на её электронику, выводя её из строя;
  • по созданию более мощных средств поражения живой силы и населения с сохранением материальной инфраструктуры и более коротким периодом полураспада микрочастиц радиоактивных продуктов взрыва для безопасности собственных войск и обеспечения возможности воспользоваться инфраструктурой занятых территорий вскоре после применения оружия первого удара.

Эксперименты долгое время не доходили до стадии производства серийных нейтронных боеприпасов. Впервые технология его производства была разработана в США во второй половине 1970-х. Сейчас технологией производства такого оружия обладают также Россия, Франция и Китай. В России также созданы и нейтронные пушки[источник не указан 1001 день].

Слойка с сахаром

В середине 1946 года Теллер предложил очередную схему водородной бомбы — «будильник». Она состояла из чередующихся сферических слоев урана, дейтерия и трития. При ядерном взрыве центрального заряда плутония создавалось необходимое давление и температура для начала термоядерной реакции в других слоях бомбы. Однако для «будильника» требовался атомный инициатор большой мощности, а США (как, впрочем, и СССР) испытывали проблемы с наработкой оружейного урана и плутония.

Осенью 1948 года к аналогичной схеме пришел и Андрей Сахаров. В Советском Союзе конструкция получила название «слойка». Для СССР, который не успевал в достаточном количестве нарабатывать оружейный уран-235 и плутоний-239, сахаровская слойка была панацеей. И вот почему.

В обычной атомной бомбе природный уран-238 не только бесполезен (энергии нейтронов при распаде не хватает для инициации деления), но и вреден, поскольку жадно поглощает вторичные нейтроны, замедляя цепную реакцию. Поэтому оружейный уран на 90% состоит из изотопа уран-235. Однако нейтроны, появляющиеся в результате термоядерного синтеза, в 10 раз более энергетичные, чем нейтроны деления, и облученный такими нейтронами природный уран-238 начинает превосходно делиться. Новая бомба позволяла использовать в качестве взрывчатки уран-238, который прежде рассматривался как отходы производства.

Изюминкой сахаровской «слойки» было также применение вместо остродефицитного трития белого легкого кристаллического вещества — дейтрида лития 6LiD.

Как упоминалось выше, смесь дейтерия и трития поджигается гораздо легче, чем чистый дейтерий. Однако на этом достоинства трития заканчиваются, а остаются одни недостатки: в нормальном состоянии тритий — газ, из-за чего возникают трудности с хранением; тритий радиоактивен и, распадаясь, превращается в стабильный гелий-3, активно пожирающий столь необходимые быстрые нейтроны, что ограничивает срок годности бомбы несколькими месяцами.

Нерадиоактивный дейтрид лития же при облучении его медленными нейтронами деления — последствиями взрыва атомного запала — превращается в тритий. Таким образом, излучение первичного атомного взрыва за мгновение вырабатывает достаточное для дальнейшей термоядерной реакции количество трития, а дейтерий в дейтриде лития присутствует изначально.

Именно такая бомба, РДС-6с, и была успешно испытана 12 августа 1953 на башне Семипалатинского полигона. Мощность взрыва составила 400 килотонн, и до сих пор не прекратились споры, был ли это настоящий термоядерный взрыв или сверхмощный атомный. Ведь на реакцию термоядерного синтеза в сахаровской слойке пришлось не более 20% суммарной мощности заряда. Основной вклад во взрыв внесла реакция распада облученного быстрыми нейтронами урана-238, благодаря которому РДС-6с и открыла эру так называемых «грязных» бомб.

Дело в том, что основное радиоактивное загрязнение дают как раз продукты распада (в частности, стронций-90 и цезий-137). По существу, сахаровская «слойка» была гигантской атомной бомбой, лишь незначительно усиленной термоядерной реакцией. Не случайно всего один взрыв «слойки» дал 82% стронция-90 и 75% цезия-137, которые попали в атмосферу за всю историю существования Семипалатинского полигона.

Нейтронная бомба — реальная угроза XXI века

ХХ век — время создания оружия массового поражения

ХХ век вошел в историю человечества не только своими достижениями в научно-технической сфере, но и тем, что он предъявил человечеству оружие такой колоссальной мощи и разрушительной силы, что под угрозой оказалось не какое-либо одно государство, а вся наша цивилизация в целом. Одной из разновидностей такого вооружения является нейтронная бомба.

Краткая характеристика нейтронного оружия

Об этом оружии известно гораздо меньше, чем, например, о ядерном или водородном, многие разработки до сих пор окутаны государственной тайной. Доподлинно можно утверждать, что нейтронная бомба представляет особый вид тактического оружия, основная разрушающая сила которого связана со сверхбыстрым потоком нейтральных элементарных частиц. Его безусловным преимуществом по отношению к другим разновидностям ядерного оружия является намного больший радиус поражения.

Преимущества и недостатки нейтронной бомбы

С другой стороны, этот вид вооружения обладает своей спецификой. В частности, взрыв бомбы с зарядом нейтронов обладает сравнительно небольшой мощностью. Все дело в том, что если увеличить этот параметр, то нейтроны будут просто-напросто рассеиваться в воздухе, а радиус поражения окажется примерно таким же. В связи с такой небольшой мощностью и количество разрушений будет сравнительно небольшим: так, даже если будет использована самая мощная нейтронная бомба, то радиус, где будут наблюдаться сплошные разрушения, вряд ли превысит один километр.

Принцип действия нейтронной бомбы

На появление оружия с нейтронным носителем огромное влияние оказало создание атомной бомбы. Все дело в том, что на больших высотах воздействие основного поражающего фактора ядерного взрыва, коим является ударная волна, сводится к минимуму. В то же время нейтронная бомба и создаваемый ею мощный поток нейтральных элементарных частиц и на большой высоте проявляют себя более чем эффективно. Действие этого оружия основано на том, что сами нейтроны способны проникать через обшивку любого летательного аппарата и оказывать негативное влияние на системы управления. Кроме того, использование этих частиц может помочь в анализе того, какой груз – ядерный или обычный – несет на себе тот или иной самолет.

США — безусловный лидер в создании нейтронного оружия

Стоит отметить, что безусловными лидерами в этой сфере ОМП являются американцы. Исследования по использованию нейтронов в качестве оружия здесь были начаты еще в конце 1950-х гг., а уже в 1974-м первые подобные боеприпасы были приняты на вооружение. Правда, после распада Советского Союза американцы объявили о полной ликвидации данного оружия, однако по самым последним сведениям целый ряд стран, среди которых те же США, а также Россия, Китай и Израиль, имеют все необходимое, чтобы быстро развернуть производство нейтронных боеприпасов. На встречах самого разного уровня неоднократно поднимались вопросы о недопустимости создания и применения данного вида ОМП, однако нельзя исключать того, что нарастание напряженности в мире может подвигнуть ряд государств на размораживание своих разработок.

Отзывы владельцев

Смертоносная концепция

В настоящее время в США активно обсуждается концепция использования ядерного оружия малой мощности для поражения подземных бункеров. Взрыв заряда должен происходить после проникновения бомбы на несколько десятков метров в глубь земли, что, по мнению ученых, сведет к минимуму риск радиоактивного заражения местности. Рассматривается возможность использования для этих целей авиабомбы B-61-11 с боеголовкой 0,3 килотонны. Кстати, В-61 сейчас размещают уже в Европе, стараясь таким образом приучить европейцев свыкнуться с возможностью перерастания обычной войны в ядерную.

Среди российских средств ядерные заряды сегодня могут нести оперативно-тактические ракетные комплексы «Искандер-М», крылатые ракеты морского базирования «Калибр», авиационные комплексы «Кинжал» на высотных перехватчиках МиГ-31К, а также сверхмощные 240-миллиметровые минометы 2С4 «Тюльпан» и 203-миллиметровые гаубицы 2С7 «Пион». Последние две системы относятся к резерву Верховного главнокомандования.

Когда-то подобные ВВТ действительно стояли в Западной группе войск и должны были в случае конфликта с НАТО остановить продвижение противника с помощью ядерных фугасов. В 1990 году после подписания Договора об обычных вооруженных силах в Европе (ДОВСЕ) все атомные самоходки вывели из состава Вооруженных сил и убрали на базы хранения за Урал.

Согласно Договору о всеобъемлющем запрещении ядерных испытаний еще в 1996 году Москва и Вашингтон взяли на себя обязательства не проводить ядерные взрывы в трех средах: воде, воздухе и под землей. Однако лазейка нашлась. Это проведение так называемых подкритических (США) и гидродинамических (Россия) экспериментов. Их сущность в проверке ядерного вещества на стадии обжатия взрывом химической взрывчатки. Такой «взрыв» составляет не более 0,1 кт в тротиловом эквиваленте. И хотя в эксперименте присутствует определенное количество урана-235 или плутония-239, ударной волны, светового излучения, проникающей радиации и электромагнитного излучения не возникает.

Эксперименты с макетами ядерных устройств могут проводиться в тех же штольнях и по такой же технологии, что и при работе с полноценными ядерными устройствами. В США – это ядерный полигон в Неваде. В России – побережье пролива Маточкин Шар архипелага Новая Земля. Макет испытуемого устройства помещается в специальный контейнер, который обкладывается бентонитовой глиной, вход в штрек бетонируется, после чего устройство готово к взрыву. Специальный контейнер позволяет производить подкритические эксперименты без особого риска для окружающей среды и людей на открытом воздухе даже на внутренних полигонах. Испытатели при этом могут находиться недалеко от устройства.

Так что модернизация американских подводных ракетоносцев нам, быть может, менее неприятна, чем возвращение ядерных зарядов малой мощности в концепцию ведения боевых операций. Американцы планировали сделать это еще в 1991 году в Ираке, когда собирались взорвать над страной ядерный заряд с мощным электромагнитным импульсом. Взрыв должен был вывести из строя систему управления ПВО, но тогда США не решились создать прецедент. Однако соблазн остался. Стандартный ядерный боезаряд, сброшенный в Японии, имел мощность 20 килотонн и уничтожал все в радиусе более 10 километров. Можно предположить, что «Малышка» W76-2 кратно поразит меньшую площадь и впишется в рамки концепции «неприемлемого ущерба».

Что касается Российской Федерации, то мы должны забыть о правилах обходительности в отношениях с так называемыми партнерами, которые пекутся только о своей выгоде. С волками жить – по-волчьи выть. Иначе нас просто проглотят и не подавятся. «Иначе нас сомнут», – сказал Сталин за 10 лет до Великой Отечественной и оказался прав: не проведи мы индустриализацию, СССР не отразил бы нашествие гитлеровских моторизованных полчищ.

Впрочем, в послевоенной мировой истории есть и другие примеры. Смогли договориться на грани ядерной катастрофы Никита Хрущев и Джон Кеннеди, Михаил Горбачев и Рональд Рейган, Дмитрий Медведев и Барак Обама.

СНВ-3 истекает в 2021 году. Времени отойти от края пропасти остается все меньше. Нашим «партнерам» нельзя рассчитывать на какие-либо новые концепции использования ядерного оружия малой мощности. Победы они даже в локальной войне не принесут. Напротив, вызовут сокрушительный ответный удар всей мощи стратегических ядерных сил Российской Федерации.

Олег Фаличев

Петр Черкашин

Газета «Военно-промышленный курьер», опубликовано в выпуске № 42 (855) за 3 ноября 2020 года

История создания нейтронной бомбы

Атомные бомбы, взорванные американцами над Хиросимой и Нагасаки, принято относить к первому поколению ядерного оружия. Принцип его работы основан на реакции делений ядер урана или плутония. Ко второму поколению относится оружие, в принцип работы которого положены реакции ядерного синтеза – это термоядерные боеприпасы, первое из них было взорвано США в 1952 году.

К ядерному оружию третьего поколения относятся боеприпасы, после взрыва которых, энергия направляется на усиление того или иного фактора поражения. Именно к таким боеприпасам относятся нейтронные бомбы.

Впервые о создании нейтронной бомбы заговорили в середине 60-х годов, хотя, его теоретическое обоснование обсуждалось гораздо раньше – еще в середине 40-х годов. Считается, что идея создания подобного оружия принадлежит американскому физику Самуэлю Коену. Тактическое ядерное оружие, несмотря на его значительную мощь, не слишком эффективно против бронетехники, броня хорошо защищала экипаж практически от всех поражающих факторов ЯО.

Первое испытание нейтронного боевого устройства было проведено в США в 1963 году. Однако мощность излучения оказалась гораздо ниже той, на которую рассчитывали военные. На доводку нового оружия потребовалось более десяти лет: в 1976 году американцы провели очередные испытания нейтронного заряда, результаты которого оказались весьма впечатляющими. После этого было принято решение о создании 203-мм снарядов с нейтронной боевой частью и боеголовок для тактических баллистических ракет «Ланс».

В настоящее время технологиями, которые позволяют создавать нейтронное оружие, владеют США, Россия и Китай (возможно, Франция). Некоторые источники сообщают, что массовый выпуск подобных боеприпасов продолжался примерно до середины 80-х годов прошлого века. В этот момент в броню боевой техники стали повсеместно добавлять бор и обедненный уран, что практически полностью нейтрализовало основной поражающий фактор нейтронных боеприпасов. Это привело к постепенному отказу от этого вида оружия. Хотя, как обстоит ситуация на самом деле — неизвестно. Информация такого рода находится под многими грифами секретности и практически не доступна широкой общественности.

Всадники Апокалипсиса обрели новые черты и стали реальными как никогда прежде. Ядерные и термоядерные бомбы , биологическое оружие , «грязные » бомбы, баллистические ракеты – все это несло угрозу массового уничтожения для многомиллионных мегаполисов, стран и континентов.

Одной из самых впечатляющих «страшилок» того периода была нейтронная бомба – разновидность ядерного оружия, специализирующаяся на уничтожении биологических организмов при минимальном воздействии на неорганические объекты. Советская пропаганда уделила много внимания этому ужасному оружию, изобретению «сумрачного гения» заокеанских империалистов.

Что из этих рассказов правда, а что вымысел? Как работает нейтронная бомба? Есть ли подобные боеприпасы на вооружении российской армии или вооруженных сил США? Ведутся ли разработки в этой области в наши дни?

Начало положено

В апреле 1903 года в Парижском саду известного физика Франции Поля Ланжевена собрались его друзья. Поводом стала защита диссертации молодой и талантливой учёной Марии Кюри. Среди именитых гостей присутствовал знаменитый английский физик сэр Эрнест Резерфорд. В самый разгар веселья был потушен свет. Мария Кюри объявила всем, что сейчас будет сюрприз. С торжественным видом Пьер Кюри внёс небольшую трубочку с солями радия, которая светила зелёным светом, вызывая необычайный восторг у присутствующих. В дальнейшем гости жарко рассуждали об будущем этого явления. Все сходились во мнении, что благодаря радию решится острая проблема нехватки энергии. Это всех вдохновляло на новые исследования и дальнейшие перспективы. Если бы тогда им сказали, что лабораторные работы с радиоактивными элементами положат начало страшному оружию XX века, неизвестно, какова бы была их реакция. Именно тогда началась история атомной бомбы, унесшей жизни сотни тысяч японских мирных жителей.

Миф 3: любая броня бессильна перед нейтронной бомбой

Каковы последствия взрыва? Происходит нейтронная бомбардировка объектов в зоне поражения. Если на их пути встают металлы, то после бомбардировки их атомов образуется радиоактивность с появлением радиоактивного изотопа. Поэтому прятаться во время взрыва за стальной плитой – это верный способ оказаться на том свете.

Но в армии неглупые люди. Средство защиты экипажей военной техники разработали в достаточно короткий срок. Всего лишь следовало дополнить броню материалами либо частями, поглощающими нейтроны.

Затем решили использовать обедненный уран. В США на этом не остановились: американцы применили дакрит – особое керамическое сырье, способное стать альтернативой бору и урану, но менее тяжелое.

Если военная техника не попадет в эпицентр взрыва, ее команда вполне может остаться в живых. Что касается обыкновенных солдат… В радиусе 50 м от эпицентра взрыва пехотинцы могут укрыться за бетонной стеной толщиной до 2,5-3 м. Впрочем, следует помнить о взрывной волне.

В других случаях необходимо учесть, что эффективнее всего нейтроны поглощаются веществами, содержащими H2. Такими, как обычная питьевая вода, парафин, полипропилен, полиэтилен и другими.

Миф 1: нейтронная бомба уничтожает только людей

Так поначалу и думали. Технике и зданиям взрыв этой штуковины, по идее, не должен был нанести повреждений. Но только на бумаге.

На самом деле, как бы мы ни проектировали специальный атомный боеприпас, его детонация все равно породит ударную волну.

Отличие нейтронной бомбы в том, что на ударную волну приходится только 10-20 процентов выделяющейся энергии, в то время как у обычной атомной бомбы — 50 процентов.

Результаты испытаний нейтронной бомбы в Неваде

Взрывы нейтронных зарядов на полигоне в пустыне Невада в США показали, что в радиусе нескольких сот метров ударная волна сносит все здания и постройки.

Как работает нейтронная бомба — особенности ее поражающих факторов

Нейтронная бомба – это разновидность ядерного оружия, основным поражающим фактором которого является поток нейтронного излучения. Вопреки распространенному мнению, после взрыва нейтронного боеприпаса образуется и ударная волна, и световое излучение, но большая часть выделяемой энергии превращается в поток быстрых нейтронов. Нейтронная бомба относится к тактическому ядерному оружию.

Принцип действия бомбы основан на свойстве быстрых нейтронов гораздо свободнее проникать через различные преграды, по сравнению с рентгеновским излучением, альфа, бета и гамма-частицами. Например, 150 мм брони способны удержать до 90% гамма-излучения и только 20% нейтронной волны. Грубо говоря, спрятаться от проникающего излучения нейтронного боеприпаса гораздо сложнее, чем от радиации «обычной» ядерной бомбы

Именно это свойство нейтронов и привлекло внимание военных

Нейтронная бомба имеет ядерный заряд относительно небольшой мощности, а также специальный блок (его обычно изготавливают из бериллия), который и является источником нейтронного излучения. После подрыва ядерного заряда большая часть энергии взрыва преобразуется в жесткое нейтронное излучение. На остальные факторы поражения — ударная волна, световой импульс, электромагнитное излучение — приходится лишь 20% энергии.

Однако все вышесказанное всего лишь теория, практическое применение нейтронного оружия имеет некоторые особенности.

Земная атмосфера очень сильно гасит нейтронное излучение, поэтому дальность действия этого поражающего фактора не больше, чем радиус поражения ударной волны. По этой же причине нет смысла изготавливать нейтронные боеприпасы большой мощности – излучение все равно быстро затухнет. Обычно нейтронные заряды имеют мощность около 1 кТ. При его подрыве происходит поражение нейтронным излучением в радиусе 1,5 км. На дистанции до 1350 метров от эпицентра оно остается опасным для жизни человека.

Кроме того, поток нейтронов вызывает в материалах (например, в броне) наведенную радиоактивность. Если посадить в танк, попавший под действие нейтронного оружия (на дистанциях около километра от эпицентра), новый экипаж, то он получит летальную дозу радиации в течение суток.

Не соответствует действительности распространенное мнение, что нейтронная бомба не уничтожает материальные ценности. После взрыва подобного боеприпаса образуется и ударная волна, и импульс светового излучения, зона сильных разрушений от которых имеет радиус примерно в один километр.

Нейтронные боеприпасы не слишком подходят для использования в земной атмосфере, зато они могут быть весьма эффективны в космическом пространстве. Там нет воздуха, поэтому нейтроны распространяются беспрепятственно на весьма значительные расстояния. Благодаря этому различные источники нейтронного излучения рассматриваются в качестве эффективного средства противоракетной обороны. Это так называемое пучковое оружие. Правда, в качестве источника нейтронов обычно рассматривается не нейтронные ядерные бомбы, а генераторы направленных нейтронных пучков – так называемые нейтронные пушки.

Использовать их в качестве средства поражения баллистических ракет и боевых блоков предлагали еще разработчики рейгановской программы Стратегической оборонной инициативы (СОИ). При взаимодействии пучка нейтронов с материалами конструкции ракет и боеголовок возникает наведенная радиация, которая надежно выводит из строя электронику этих устройств.

После появления идеи нейтронной бомбы и начала работ по ее созданию стали разрабатываться методы защиты от нейтронного излучения. В первую очередь они были направлены на уменьшение уязвимости боевой техники и экипажа, находящегося в ней. Основным методом защиты от подобного оружия стало изготовление специальных видов брони, хорошо поглощающих нейтроны. Обычно в них добавляли бор – материал, прекрасно улавливающий эти элементарные частицы. Можно добавить, что бор входит в состав поглощающих стрежней ядерных реакторов. Еще одним способом уменьшить поток нейтронов является добавление в броневую сталь обедненного урана.

Кстати, практически вся боевая техника, созданная в 60-е – 70-е годы прошлого столетия, максимально защищена от большинства поражающих факторов ядерного взрыва.

Золотая ракета

Гораздо большие перспективы для нового оружия открылись в противоракетной обороне. Из-за недостаточной точности систем наведения времен холодной войны баллистические ракеты предполагалось уничтожать перехватчиками с атомным зарядом. Однако за пределами атмосферы ударная и тепловая волны ядерного взрыва не действуют. А ядерный взрыв в атмосфере оставляет нежелательное загрязнение.

Нейтронные потоки одинаково эффективно работают и в атмосфере, и за ее пределами. Проходя сквозь плутоний ядерной боеголовки, они вызывают в нем преждевременную цепную реакцию без достижения критической массы. В США это явление назвали «эффектом шипучки» — боеголовка мегатонного класса взрывалась, как хлопушка на детском празднике. Вдобавок работа нейтронного оружия сопровождается мягким рентгеновским излучением — оно моментально испаряет оболочку вражеского термоядерного заряда, распыляя его в атмосфере.

Принятая на вооружение в 1975 году американская противоракета LIM-49A Spartan несла пятимегатонную нейтронную боеголовку, для увеличения потока частиц ее внутренняя поверхность была покрыта слоем золота. Пришедшие на смену Spartan перехватчики также снабжены нейтронными боевыми частями. По данным из открытых источников, схожие технологии используются и в ракетах российской системы ПРО А-135 «Амур».

Универсальное российское шасси ГАЗ-3308

Конструкция

Как развивались технологии дальше

Открытие французского механика относительно устройства переменного тока получило широкое применение только в 70-х года ХХ века. Все дело в том, что он только изобрел первый трансформатор, хотя изобретение требовало совершенствование. На основании созданного прототипа другие ученые занимались его дальнейшей разработкой. В 1876 году П.Н. Яблочков представил усовершенствованную модель трансформатора. Хотя нужно сказать, что были внесены немного изменений и дополнений. К примеру:

  1. В качестве сердечника ученый использовал специальный стержень, на который непосредственно осуществлялась намотка обмотки.
  2. Вместо, ранее используемой пружинной пластины за основу он взял индукционную катушку.

Благодаря внесенным изменениям работа первичной обмотки осуществлялась согласно обусловленной последовательности, тем самым предоставляя напряжение, которое требовалось для работы электроприборов.

Но следует сказать, что совершенствование первого трансформатора осуществлялось и другими учеными. Непременно необходимо упомянуть, что Яблочков сделал преобразующее ток устройство с разомкнутыми сердечниками, что в свою очередь предусматривало большие затраты электроэнергии. Спустя некоторое время братья Гопкинсоны в 1882 году сделали трансформатор с замкнутыми сердечниками и это послужило стартом для экономии потребления электричества в будущем.

Сутью совершенствования стало то, что они поставили на сердцевину катушки, имеющие высокое и низкое напряжение. А вот сам стержень состоял из проволоки и стальных полосок, которые разделялись между собой материалом с изоляционными характеристиками.

В дальнейшем работы по усовершенствованию трансформаторов продолжались. Основанием этого являлось уменьшение потребления электроэнергии, поскольку предыдущие устройства ее расходовали достаточно много. Немаловажным открытием считается изобретение трехфазного трансформатора русским инженером Доливо-Добровольским в 1890 году. На основании произведенных ним расчетов он доказал, что благодаря трехфазному трансформатору можно экономить потребляемую электроэнергию.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector