§25.2. важнейшие закономерности в мире звезд

Общая информация

Эволюция Звезд

Время жизни звезды любого типа – невероятно долгий и сложный процесс, сопровождаемый явлениями космического масштаба. Многогранность его просто невозможно полностью проследить и изучить, даже используя весь арсенал современной науки. Но на основании тех уникальных знаний, накопленных и обработанных за весь период существования земной астрономии, нам становятся доступными целые пласты ценнейшей информации. Это позволяет связать последовательность эпизодов из жизненного цикла светил в относительно стройные теории и смоделировать их развитие. Что же это за этапы?

Литература[ | код]

Рождение звёзд[править | править код]

Основная статья: Формирование звёзд

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000—10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Пока облако свободно обращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нём могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызывают гравитационный коллапс облака. Один из сценариев, приводящих к этому — столкновение двух облаков. Другим событием, вызывающим коллапс, может быть прохождение облака через плотный рукав спиральной галактики. Также критическим фактором может стать взрыв близлежащей сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения. В общем, любые неоднородности в силах, действующих на массу облака, могут запустить процесс звездообразования.

Из-за возникших неоднородностей давление молекулярного газа больше не может препятствовать дальнейшему сжатию, и газ начинает под действием гравитационных сил притяжения собираться вокруг центров будущих звезд, в масштабе времени:
К примеру, для Солнца лет.

Вышеописанный сценарий правомерен только в случае, если молекулярное облако не вращается, однако все они в той или иной мере обладают вращательным моментом. Согласно закону сохранения импульса, по мере уменьшения размера облака растёт скорость его вращения, и в определённый момент вещество перестает вращаться как одно тело и разделяется на слои, продолжающие коллапсировать независимо друг от друга. Число и массы этих слоёв зависят от начальных массы и скорости вращения молекулярного облака. В зависимости от этих параметров формируются различные системы небесных тел: звёздные скопления, двойные звёзды, звёзды с планетами.

Эволюция звезд различной массы

Стоит отметить, что звездные тела имеют разные характеристики.

Низкая масса

Если начальная масса светила меньше 0.08 солнечной массы, то в недрах таких звезд не возникнет сгорание водорода. Проще говоря, в них отсутствует ядерный синтез, а энергия вырабатывается благодаря сжатию ядра. Примером подобных светил являются коричневые карлики. Их конечный этап — превращение в чёрный карлик, то есть остывшую звезду, которая не выделяет энергию.

К сожалению, такая же участь уготовлена красным карликам с подобной массой. Но в отличие от коричневых собратьев, внутри них происходит горение водорода. Правда, в слоевом источнике в районе гелиевого ядра водород уже не горит. В результате светило сжимается и нагревается. Затем наступает последний этап эволюции красного карлика малой массы — вырожденный гелиевый карлик. В это время практически всё звёздное тело состоит из гелия с водородной оболочкой, а равновесие удерживается вырожденным электронным газом.

Белый карлик

Средняя масса

Как оказалось, звёздная эволюция при средней массе тела проходит по следующему пути.Для светил с массой от 0.5 до 8 солнечных масс путь один — это превращение в углеродно-кислородный белый карлик, который будет состоять из вырожденного газа.

Когда у звёзд с данными значениями массы в ядре заканчивается водород (он же сжигается, как мы помним), начинается его горение в слоевом источнике вокруг гелиевого ядра. В результате светило эволюционирует в стадию красного гиганта.

Красный гигант

Правда, процесс перевоплощения немного отличается при определенном весе. Так, если весовой показатель звезды находится в пределах от 0.5 до 3 солнечных масс, то в её ядре гелий взорвётся. Потому как в нём располагается вырожденный газ, произойдёт так называемая гелиевая вспышка.

Массивные звезды

А вот для светил с большей массой (от 3 до 8 солнечных) гелий будет гореть, но не взорвется. Поскольку газ не успевает выродиться из-за постоянной высокой ядерной температуры. Вместе с гелиевым сгоранием начинается рост конвективного ядра (то есть области, где происходит перенос энергии путём перемешивания веществ), а вокруг него горит оболочка из водорода. Что также приводит к превращению звезды в красный гигант.

Конвективная зона

Обозначения

Эволюция звезд с научной точки зрения

Любая звезда зарождается из сгустка холодного межзвездного газа, который под действием внешних и внутренних гравитационных сил сжимается до состояния газового шара. Процесс сжатия газовой субстанции не останавливается ни на мгновение, сопровождаясь колоссальным выделением тепловой энергии. Температура нового образования растет до тех пор, пока не запускается в ход термоядерный синтез. С этого момента сжатие звездной материи прекращается, достигнут баланс между гидростатическим и тепловым состоянием объекта. Вселенная пополнилась новой полноценной звездой.

Главное звездное топливо — атом водорода в результате запущенной термоядерной реакции

В эволюции звезд принципиальное значение имеют их источники тепловой энергии. Улетучивающаяся в пространство с поверхности звезды лучистая и тепловая энергия пополняются за счет охлаждения внутренних слоев небесного светила. Постоянно протекающие термоядерные реакции и гравитационное сжатие в недрах звезды восполняют потерю. Пока в недрах звезды имеется в достаточном количестве ядерное топливо, звезда светится ярким светом и излучает тепло. Как только процесс термоядерного синтеза замедляется или прекращается совсем, для поддержания теплового и термодинамического равновесия запускается в действие механизм внутреннего сжатия звезды. На данном этапе объект уже излучает тепловую энергию, которая видна только в инфракрасном диапазоне.

Исходя из описанных процессов, можно сделать вывод, эволюция звезд представляет собой последовательную смену источников звездной энергии. В современной астрофизике процессы трансформации звезд можно расставить в соответствии с тремя шкалами:

  • ядерная временная шкала;
  • тепловой отрезок жизни звезды;
  • динамический отрезок (финальный) жизни светила.

В каждом отдельном случае рассматриваются процессы, определяющие возраст звезды, ее физические характеристики и разновидность гибели объекта. Ядерная временная шкала интересна до тех пор, пока объект питается за счет собственных источников тепла и излучает энергию, являющуюся продуктом ядерных реакций. Оценка длительности этого этапа вычисляется путем определения количества водорода, которое превратится в процессе термоядерного синтеза в гелий. Чем больше масса звезды, тем больше интенсивность ядерных реакций и соответственно выше светимость объекта.

Размеры и масса различных звезд, начиная от сверхгиганта, заканчивая красным карликом

Тепловая временная шкала определяет этап эволюции, в течение которого звезда расходует всю тепловую энергию. Этот процесс начинается с того момента, когда израсходовались последние запасы водорода и ядерные реакции прекратились. Для поддержания равновесия объекта запускается процесс сжатия. Звездная материя падает к центру. При этом происходит переход кинетической энергии в тепловую энергию, затрачиваемую на поддержание необходимого температурного баланса внутри звезды. Часть энергии улетучивается в космическое пространство.

Этапы эволюции звезд

Теория звездной эволюции рассматривает изменения в физических, химических характеристиках звезд, которые связаны с возрастом светила. Ее основными этапами являются:

  • образование протозвезды из газового облака;
  • формирование звезды разной массы, которая в ходе термоядерных процессов станет либо гигантом, либо сверхгигантом;
  • эволюция звезд с низкой массой заканчивается их превращением в белого карлика;

тяжелая звезда в ходе гравитационного коллапса образует нейтронную звезду или черную дыру.

Гравитационным коллапсом называют катастрофически быстрое сжатие космических тел под действием гравитационных сил. 

Протозвезда

Жизнь каждой звезды начинается с рождения. На первых этапах формируется большое облако, внутри которого образуются молекулы. В результате гравитационного воздействия облако межзвездного газа начинает сжиматься и постепенно приобретает шарообразную форму. Во время сжатия энергия гравитации переходит в тепло, что приводит к повышению температурных показателей в центральной части звезды.  Но при этом температура еще не такая высокая, чтобы запустились термоядерные реакции.

На первой стадии своего эволюционного развития объект принято называть протозвездой. Процесс образования нового тела проходит на протяжении долгого времени и может достигать миллионов лет. Протозвезды со сформированным ядром и оболочкой выделяют в отдельный тип, который называют звезды до главной последовательности. У них низкая температура и высокая светимость. Звезда постепенно начинает двигаться к главной последовательности, а свою энергию она получает благодаря силам гравитации.

Процесс сжатия у протозвезд происходит очень медленно. Например, чтобы Солнце перешло в главную последовательность ему потребовалось 30 млн. лет.

Звёзды большой массы

Когда водород у звезды большой массы полностью исчерпывается, в ядре начинает идти тройная гелиевая реакция и одновременно реакция образования кислорода (3He=>C и C+He=>О). В то же время на поверхности гелиевого ядра начинает гореть водород. Появляется первый слоевой источник.

Запас гелия исчерпывается очень быстро, так как в описанных реакциях в каждом элементарном акте выделяется сравнительно немного энергии. Картина повторяется, и в звезде появляются уже два слоевых источника, а в ядре начинается реакция C+C=>Mg.

Эволюционный трек при этом оказывается очень сложным. На диаграмме Герцшпрунга-Расселла звезда перемещается вдоль последовательности гигантов или (при очень большой массе в области сверхгигантов) периодически становится цефеидой.

https://youtube.com/watch?v=BnG8nUb59VQ

Читайте также

Общая информация

Эволюция Звезд

Время жизни звезды любого типа – невероятно долгий и сложный процесс, сопровождаемый явлениями космического масштаба. Многогранность его просто невозможно полностью проследить и изучить, даже используя весь арсенал современной науки. Но на основании тех уникальных знаний, накопленных и обработанных за весь период существования земной астрономии, нам становятся доступными целые пласты ценнейшей информации. Это позволяет связать последовательность эпизодов из жизненного цикла светил в относительно стройные теории и смоделировать их развитие. Что же это за этапы?

Эпизод III. Расцвет жизненного пути звезды

Солнце снятое в линии H альфа. Наше звезда в самом расцвете сил.

В середине своей жизни космические светила могут обладать самыми разнообразными цветами, массой и габаритами. Цветовая палитра варьируется от голубоватых оттенков до красных, а их масса может быть значительно меньше солнечной, либо превышать ее более чем в триста раз. Главная последовательность жизненного цикла звезд длится около десяти миллиардов лет. После чего в ядре космического тела заканчивается водород. Этот момент принято считать переходом жизни объекта на следующий этап. По причине истощения водородных ресурсов в ядре останавливаются термоядерные реакции. Однако в период вновь начавшегося сжатия звезды начинается коллапс, который приводит к возникновению термоядерных реакций уже с участием гелия. Этот процесс стимулирует просто невероятное по масштабам расширение звезды. И теперь она считается красным гигантом.

Звезды красных гигантов и сверхгигантов

Как не существует абсолютно идентичных людей, так нет и одинаковых звезд во Вселенной. Среди них выделяют группу звезд-гигантов, которые излучают в тысячи раз больше света, чем Солнце. Такие объекты имеют значительные размеры (от 10 до 1 000 радиусов нашего Светила) и невысокую плотность (около 10-2 — 10-4 кг/м3). Кроме того, с поверхности ряда гигантов происходит интенсивное истечение газового вещества.

К одним из самых уникальных и интересных представителей больших звезд относятся красные гиганты. Эти звезды имеют низкую температуру. Температура красных гигантов  достигает в среднем 3 000 — 5 000С, а их радиус в сотни раз превосходит радиус Солнца. Отмечено, что светимость красных гигантов где-то в 100 раз больше, чем у нашей Звезды. Максимальное количество энергии излучения такого объекта приходится на красную и инфракрасную части спектра. Как следует из теории звездной эволюции, образование красных гигантов происходит из звезд главной последовательности после того, как в их центральной части произойдет практически полное выгорание водорода.

К тому времени, как вполне обычное светило превратится в красного гиганта, его структура успевает измениться: внутри образуется плотное, богатое гелием ядро. Вокруг ядра тонкий энерговыделяющий слой и протяженная оболочка. Масса красного гиганта составляет от 1,5 до 15 масс Солнца и плотность менее 0,001 г/см3, что намного меньше плотности нашей звезды. В астрономии к красным гигантам относятся:

  • Альдебаран;
  • Арктур;
  • Гакрукс;
  • Мира.

Среди этой категории светил встречаются особо крупные объекты, которые были выделены в отдельный класс красных сверхгигантов. Пока что таких звезд обнаружено совсем немного. Они отличаются достаточно большими размерами, а их светимость достигает 105 светимостей Солнца. Интересно, что такие объекты тяжелее нашего светила в 50 раз. Зато их радиусы достигают тысячи радиусов Солнца. Температура красного сверхгиганта 3 000 — 5 000С. Спектры этих объектов имеют молекулярные полосы поглощения, максимальное излучение приходится на спектральные области: красную, а также инфракрасную. Спектральный класс красного сверхгиганта К и М. Самым известным сверхгигантом является Бетельгейзе.

Середина жизненного цикла звезды

Среди звёзд встречается широкое многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе — от 0,0767 до около 300 Солнечных масс по последним оценкам. Светимость и цвет звезды зависят от температуры её поверхности, которая, в свою очередь, определяется её массой. Все новые звёзды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь, естественно, идёт не о физическом перемещении звезды — только о её положении на указанной диаграмме, зависящем от параметров звезды. Фактически, перемещение звезды по диаграмме отвечает лишь изменению параметров звезды.

Маленькие и холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности десятки миллиардов лет, в то время как массивные сверхгиганты сходят с главной последовательности уже через несколько десятков миллионов (а некоторые спустя всего несколько миллионов) лет после формирования.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет. Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Звёзды в созвездии Стрельца (вид с Земли на центр галактики Млечный Путь)

Исторический путь легионов

Эволюция звезд с большой массой

У звезд с массой, превышающей солнечную в 5 раз, фазы сжатия и расширения повторяются несколько раз, всегда приводя к образованию тяжелых химических элементов. Во время этих нестабильных фаз звезда претерпевает последовательные изменения видимой звездной величины. В этих случаях говорят о переменной звезде.

Цефеиды представляют собой классический пример звезд, проходящих такие стадии эволюции.

Звезда приобретает каплевидную концентрическую структуру, внутри происходят последние фазы ядерных реакций. В частности, более легкие элементы сгорают в более высоких слоях, где температура ниже, тогда как более тяжелые пылают в центральной части ядра, где температура, напротив, имеет тенденцию к повышению.

У звезд с массой, превышающей солнечную в 5—9 раз, сгорание углерода и кислорода может происходить практически мгновенно. Если масса звезды еще больше, в ядре синтезируются такие элементы, как магний, неон, сера и кремний.

В чрезвычайных случаях термоядерный синтез продолжается до тех пор, пока ядро звезды почти целиком не преобразовывается в железо. В этот момент цепная реакция прекращается, потому что она не может идти одновременно с плавлением железа. Таким образом, оказывается, что звезда израсходовала все свои запасы ядерного топлива и начинает сжиматься.

Нейтронная звезда – конечный продукт эволюции некоторых типов звезд

Если масса звезды не превышает 10 солнечных масс, последние фазы оказываются нестабильными, в разных слоях идут спонтанные ядерные реакции, которые могут привести к вспышке сверхновой. Тем временем взаимная нейтрализация протонов и электронов звездного ядра приводит к тому, что ядро полностью начинает состоять из нейтронов.

После взрыва поверхностные слои звезды разрушаются, а ядро быстро уплотняется, пока не становится несжимаемым. В этом случае сжатие звезды поддерживается. Остатки вещества становятся нейтронной звездой, которая стремительно вращается вокруг собственной оси, и она начинает наблюдаться как пульсар, из-за взрыва перемещающийся по космосу со скоростью в сотни километров в секунду.

Конечная стадия эволюции звезд, масса которых превышает солнечную в 5-9 раз – нейтронная звезда.

Если масса звезды еще больше, давление гравитационных сил настолько велико, что нейтроны ядра вынуждены «пакетироваться» до невообразимой плотности, пока вещество не потеряет свою сущность.

В этом случае речь идет о необратимом гравитационном коллапсе, что приводит к образованию черной дыры.

Конечная стадия эволюции звезд, масса которых превышает солнечную более чем в 10 раз – черная дыра.

Ссылки

Звёзды большой массы

Когда водород у звезды большой массы полностью исчерпывается, в ядре начинает идти тройная гелиевая реакция и одновременно реакция образования кислорода (3He=>C и C+He=>О). В то же время на поверхности гелиевого ядра начинает гореть водород. Появляется первый слоевой источник.

Запас гелия исчерпывается очень быстро, так как в описанных реакциях в каждом элементарном акте выделяется сравнительно немного энергии. Картина повторяется, и в звезде появляются уже два слоевых источника, а в ядре начинается реакция C+C=>Mg.

Эволюционный трек при этом оказывается очень сложным. На диаграмме Герцшпрунга-Расселла звезда перемещается вдоль последовательности гигантов или (при очень большой массе в области сверхгигантов) периодически становится цефеидой.

Середина жизненного цикла звезды

Среди звёзд встречается широкое многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе — от 0,0767 до около 300 Солнечных масс по последним оценкам. Светимость и цвет звезды зависят от температуры её поверхности, которая, в свою очередь, определяется её массой. Все новые звёзды «занимают своё место» на главной последовательности согласно своему химическому составу и массе.

Маленькие и холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности десятки миллиардов лет, в то время как массивные сверхгиганты сходят с главной последовательности уже через несколько десятков миллионов (а некоторые спустя всего несколько миллионов) лет после формирования.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет. Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Зрелость[править | править код]

По прошествии определённого времени — от миллиона до десятков миллиардов лет (в зависимости от начальной массы) — звезда истощает водородные ресурсы ядра. В больших и горячих звёздах это происходит гораздо быстрее, чем в маленьких и более холодных. Истощение запаса водорода приводит к остановке термоядерных реакций.

Без давления, возникавшего в ходе этих реакций и уравновешивавшего внутреннюю гравитацию в теле звезды, звезда снова начинает сжиматься, как уже было ранее в процессе её формирования. Температура и давление снова растут, но, в отличие от стадии протозвезды, до гораздо более высокого уровня. Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия.

Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 раз. Так звезда становится красным гигантом, а фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами.

То, что происходит далее также зависит от массы звезды.

Стадии эволюции звезд

Судьба светила в находится в зависимости от исходной массы звезды и ее химического состава. Пока в ядре сосредоточены основные запасы водорода, звезда пребывает в так называемой главной последовательности. Как только наметилась тенденция на увеличение размеров звезды, значит, иссяк основной источник для термоядерного синтеза. Начался длительный финальный путь трансформации небесного тела.

Эволюция нормальных звезд

Образовавшиеся во Вселенной светила изначально делятся на три самых распространенных типа:

  • нормальные звезды (желтые карлики);
  • звезды-карлики;
  • звезды-гиганты.

Звезды с малой массой (карлики) медленно сжигают запасы водорода и проживают свою жизнь достаточно спокойно.

Таких звезд большинство во Вселенной и к ним относится наша звезда –  желтый карлик. С наступлением старости желтый карлик становится красным гигантом или сверхгигантом.

Процесс образования нейтронной звезды

Исходя из теории происхождения звезд, процесс формирования звезд во Вселенной не закончился. Самые яркие звезды в нашей галактике являются не только самыми крупными, в сравнении с Солнцем, но и самыми молодыми. Астрофизики и астрономы называют такие звезды голубыми сверхгигантами. В конце концов, их ожидает одна и та же участь, которую переживают триллионы других звезд. Сначала стремительное рождение, блистательная и ярая жизнь, после которой наступает период медленного затухания. Звезды такого размера, как Солнце, имеют продолжительный жизненный цикл, находясь в главной последовательности (в средней ее части).

Главная последовательность

Используя данные о массе звезды, можно предположить ее эволюционный путь развития. Наглядная иллюстрация данной теории — эволюция нашей звезды. Ничто не бывает вечным. В результате термоядерного синтеза водород превращается в гелий, следовательно, его первоначальные запасы расходуются и уменьшаются. Когда-то, очень не скоро, эти запасы закончатся. Судя по тому, что наше Солнце продолжает светить уже более 5 млрд. лет, не меняясь в своих размерах, зрелый возраст звезды еще может продлиться примерно такой же период.

Красный гигант

Запасов водорода и гелия в этой части звезды хватит еще на миллионы лет. Еще очень нескоро истощение запасов водорода приведет к увеличению интенсивность излучения, к увеличению размеров оболочки и размеров самой звезды. Как следствие, наше Солнце станет очень большим. Если представить эту картину через десятки миллиардов лет, то вместо ослепительного яркого диска на небе будет висеть жаркий красный диск гигантских размеров. Красные гиганты — это естественная фаза эволюции звезды, ее переходное состояние в разряд переменных звезд.

Ведущие планеты каждого года в стадии жизненного цикла человека

  • Первый год цикла проходит под влиянием Марса. Планета энергетически сильная, дает человеку выносливость, возможность развиваться физически. Способствует оздоровлению организма, помогает бороться с болезнями. Однако может случиться, что физических сил прибавляется, а интеллектуальное развитие ослабевает. Кроме того, в первый год жизненного цикла человека может ощущаться чрезмерная агрессивность, нежелание идти на уступки. А отсюда и конфликтность, и поступки, о которых позже придется пожалеть.
  • Второй год цикла проходит под влиянием Сатурна. Довольно холодный период в жизненном цикле человека, время спокойствия, переосмысления полученного опыта. Это не всегда бывает просто, ведь опыт нередко рождается из совершенных ошибок. Хотя ошибки имеются в виду не глобальные, они не приводят к кризисным ситуациям, потому что Сатурн помогает дать событиям правильную осмысленную оценку и сделать верные выводы.
  • Третий год цикла проходит под влиянием Меркурия. Вот теперь на первое место выходит интеллект. Человек готов максимально эффективно применить накопленные знания. Это отличное время для учебы, все новое дается легко, причем имеются в виду не только интеллектуальное, но и профессиональное развитие, совершенствование навыков общения, рост энергичности и практичности. Однако случается, что активное общение нацелено лишь на получение выгоды, а это непременно вредит дружеским отношениям или взаимопониманию в семье.
  • Четвертый год цикла проходит под влиянием Солнца. Самое время задуматься, разобраться в своих личностных стремлениях, ведь именно они станут ориентиром на ближайшие семь лет. Четвертый год в жизненном цикле человека – это период осмысления своего отношения к окружающим вас людям, поступкам, это время осознания собственных ошибок и понимания, что в жизни действительно главное и какова в этом мире именно ваша роль.
  • Пятый год цикла проходит под влиянием Юпитера. Время психологического взросления. Ум требует работы, в то время как физическая активность становится слабее. Чего следует постараться избежать в этот год? Неверных философских выводов в вопросах осмысления собственной жизни.
  • Шестой год цикла проходит под влиянием Луны. Пожалуй, наиболее чувственный период жизненного цикла человека. В это время люди не спешат использовать интеллект, чтобы разобраться в тех или иных жизненных вопросах, а обращаются к интуиции, к экстрасенсорному восприятию мира.
  • Седьмой год цикла проходит под влиянием Венеры. Полный жизненный цикл развития человека завершается годом высокой эмоциональности, которая непременно влечет за собой раскрытие творческих способностей. Кто-то проявится в сфере искусства, а кто-то встретит любовь всей своей жизни. А другие, наоборот, разочаруются либо в себе, либо в своей второй половинке.

Выделяют двенадцать семилетних циклов, по количеству знаков Зодиака. Над каждым циклом властвует определенная планета

Очень важно, какая именно планета оказалась у человека в гороскопе рождения. Если она влиятельная и при этом добрая, то и семилетний цикл выдается достаточно легкий, без серьезных кризисов и испытаний

В зоне непрерывного контроля

Особенность загоризонтной радиолокационной станции заключается в способности мониторить воздушное пространство за пределами радиогоризонта. Такие РЛС являются частью системы предупреждения о ракетном нападении (СПРН).

Также по теме

«Создание надёжной системы обороны»: Россия развернула загоризонтные РЛС «Подсолнух» на трёх направлениях

Российские загоризонтные РЛС «Подсолнух» развёрнуты на Дальнем Востоке, Балтике и Каспии. Об этом рассказал глава разработавшего эти…

«Загоризонтные РЛС — вид локаторов, предназначенных для сверхдальней разведки воздушного пространства. Они вскрывают намерения противника задолго до того, как его средства воздушного нападения сформируются и предпримут атаку или провокацию с пересечением границы», — говорится в материалах Минобороны РФ. 

В свою очередь, на сайте «РТИ Системы» отмечается, что современные российские загоризонтные радиолокационные станции позволяют передавать необходимую информацию средствам ПВО для обеспечения перехвата воздушных целей.

К достоинствам отечественных РЛС относят непрерывный 24-часовой мониторинг воздушного пространства, высокую степень автоматизации основных процессов, автоматизированную адаптацию к геофизическим и помеховым условиям, а также возможность эксплуатации в различных природно-климатических зонах.

Новейшие российские загоризонтные станции способны практически безошибочно обнаруживать самолёты (с вероятностью не менее 80%). Период обнаружения самолёта в зоне непрерывного контроля не превышает 350 секунд (не более 6 минут). Групповые цели фиксируются за 6—15 минут с момента взлёта.

Заступивший на боевое дежурство «Контейнер» является одной из новейших отечественных разработок в области радиолокации. Станция представляет собой антенное поле, состоящее из 144 мачт высотой с 10-этажный дом каждая. Длина площадки, на которой расположены элементы РЛС, составляет 1300 м, ширина — 200 м. Аппаратурный комплекс станции размещён в транспортабельных контейнерах. Сектор обзора РЛС — 180°, диапазон рабочих частот — 3—30 МГц.

  • Расчёты РЛС «Контейнер» на построении

По данным Минобороны РФ, максимальная дальность действия «Контейнера» составляет 3 тыс. км (по информации разработчика — 6 тыс. км). РЛС может брать на одновременное сопровождение 5 тыс. воздушных объектов. Военные уверены, что детище НИИДАР «обеспечит разведку воздушных объектов, в том числе и гиперзвуковых, над территорией западноевропейских государств и в Юго-Западном регионе».

«Станция является важным звеном в системе стратегического сдерживания, важнейшим звеном и краеугольным камнем в системе разведки и предупреждения о воздушно-космическом нападении», — приводит слова командующего 1-й армии ПВО-ПРО Воздушно-космических сил РФ генерал-лейтенанта Андрея Дёмина пресс-служба Минобороны.

При разработке «Контейнера» специалисты НИИДАР опирались на опыт создания советской загоризонтной РЛС «Дуга». В 1980-е годы она располагалась в Чернобыле и в Комсомольске-на-Амуре. За недолгое время эксплуатации станции отследили свыше 100 запусков американских ракет.

Также по теме

«Незаменим для подготовки к боевым миссиям»: каковы экспортные перспективы российского самолёта Як-130

На стартующем 17 ноября в ОАЭ международном авиасалоне Dubai Airshow 2019 впервые будет представлен российский учебно-боевой самолёт…

Уникальность «Контейнера» заключается в использовании эффекта отражения радиосигнала от ионосферы Земли. Речь идёт о так называемых пространственных волнах. Их применение позволяет мониторить ситуацию на территории, которая недоступна для прямолинейных радиоволн обычных РЛС.

«Станция использует явление отражения радиоволн декаметрового диапазона от ионосферы. Но у этой РЛС есть так называемая мёртвая зона. Она составляет 900 километров, поэтому было принято решение о расположении станции в глубине страны. Это позволяет ей находиться в безопасности и контролировать воздушное пространство сопредельных государств», — заявил в октябрьском интервью РИА Новости генеральный директор НИИДАР Кирилл Макаров.

Топ-менеджер сообщил, что предприятие планирует поставить Минобороны РФ четыре «Контейнера». Станции будут размещены для мониторинга воздушной обстановки на западном, восточном, северо-западном и южном направлениях.

Из числа загоризонтных РЛС, помимо «Контейнера», концерн «РТИ Системы» поставляет в части ВКС России станцию «Подсолнух», которая позволяет контролировать ситуацию в пределах 200-мильной прибрежной экономической зоны. Данная РЛС способна сопровождать до 200 надводных и до 100 воздушных целей. Подобно «Контейнеру, «Подсолнух» также обнаруживает самолёты, изготовленные по технологии «стелс».

См. также

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector