Технология гпврд — как создавали гиперзвуковой двигатель
Содержание:
- Содержание
- Гиперзвуковой прямоточный воздушно-реактивный двигатель
- Прямоточные воздушно-реактивные двигатели
- Прохождение медицинского освидетельствования в комиссариате
- Здравствуйте!
- Устройство
- Принцип работы турбовентиляторного двигателя
- Примечания
- Гербы и эмблемы Вооружённых СилПарашютно-десантные, десантно-штурмовые полки
- Шаг 5: Привариваем торцевые кольца
- Oписание гиперзвукового ПВРД
- Спусковой механизм
- Конструкция
- Акционеры
- История создания
- Определение пригодности водоема
- Галерея
- См. также
- Устройство ПВРД
- Оценка проекта
Содержание
Гиперзвуковой прямоточный воздушно-реактивный двигатель
К категории гиперзвуковых ПВРД относится ПВРД, который работает на скоростях более 5М. По состоянию на начало XXI века существование такого двигателя было только гипотетическим: не собрано ни единого образца, который бы прошел летные испытания и подтвердил целесообразность и актуальность его серийного выпуска.
На входе в устройство ГПВРД торможение воздуха выполняется только частично, и на протяжении остального такта перемещение рабочего тела является сверхзвуковым. Большая часть кинетической исходной энергии потока при этом сохраняется, после сжатия температура относительно низкая, что позволяет освободить рабочему телу значительное количество тепла. После входного устройства проточная часть двигателя по всей своей длине расширяется. За счет сгорания топлива в сверхзвуковом потоке происходит нагрев рабочего тела, оно расширяется и ускоряется.
Этот тип двигателя предназначен для проведения полетов в разреженной стратосфере. Теоретически такой двигатель можно использовать на многоразовых носителях космических аппаратов.
Одной из главных проблем конструирования ГПВРД является организация сгорания топлива в сверхзвуковом потоке.
В разных странах начаты несколько программ по созданию ГПВРД, все они находятся на стадии теоретических изысканий и предпроектных лабораторных исследований.
Где применяются ПВРД
ПВРД не работает при нулевой скорости и низких скоростях полета. Летательный аппарат с таким двигателем требует установки на нем вспомогательных приводов, в роли которых может выступать твердотопливный ракетный ускоритель или самолет-носитель, с которого производится запуск аппарата с ПВРД.
По причине неэффективности ПВРД на малых скоростях его практически неуместно использовать на пилотируемых самолетах. Такие двигатели предпочтительно использовать для беспилотных, крылатых, боевых ракет одноразового применения благодаря надежности, простоте и дешевизне. ПВРД также применяют в летающих мишенях. Конкуренцию по характеристикам ПВРД составляет только ракетный двигатель.
Прямоточные воздушно-реактивные двигатели
Эта разновидность двигателей функционирует таким образом, что не нуждается в подвижных деталях. Воздушные массы нагнетаются в камеру сгорания непринужденным путем, благодаря торможению потоков об обтекатели входных отверстий. В дальнейшем совершается все то же, что и в обыкновенных реактивных двигателях, а именно воздушные потоки смешиваются с топливом и выходят как реактивные струи из сопел. Прямоточные воздушно-реактивные двигатели применяются в поездах, в воздушных суднах, в «беспилотниках», в ракетах, кроме того они могут устанавливаться на велосипеды или скутеры.
Источник
Прохождение медицинского освидетельствования в комиссариате
Здравствуйте!
Я думаю, что пришла пора прояснить принцип действия всем нам известного «сердца», того самого, о котором я писал в предыдущей статье.
Паровая турбина элетростанции. Типичное устройство расширения.
Основным двигателем реактивной авиации мира является турбореактивный двигатель (ТРД) и именно его принцип работы мы сейчас без труда и лишних ненужных заморочек проясним.
Все мы прилежно учились в школе :-), и знаем, что в физике существует понятие «тепловая машина» (или «тепловой двигатель»). Человек долго подбирался к ее созданию.
Первые образцы приписывают даже Архимеду и потом Леонардо да Винчи. Но по настоящему она вошла в жизнь человека только в конце 60-х годов 18-го века, когда Д. Уатт построил свою паровую машину. Прогресс не остановить и современную жизнь уже невозможно представить без тепловых машин. Это не только тепловые электростанции и электроцентрали (в том числе, кстати и атомные станции), но и миллионы автомобилей различного назначения и, конечно же, мною очень любимые авиационные двигатели.
Теорию работы тепловой машины описывает раздел физики термодинамика. Не углубляясь в ее законы (принцип этого сайта Вам известен, если Вы читали страницу «Сайт об авиации» ), скажу, что тепловой двигатель – это машина для преобразования энергии в механическую работу. Работа — ее так сказать полезная «продукция». Этой энергией обладает используемое внутри машины так называемое рабочее тело, в качестве которого обычно выступает газ (или пар в паровой машине). Получает энергию рабочее тело при сжатии в машине, а полезную механическую работу мы потом будем иметь при последующем его расширении.
Но! Надо понимать, что в работоспособном тепловом двигателе работа, затрачиваемая на сжатие газа должна быть всегда меньше работы, которую газ может совершить при расширении. Иначе никакой полезной «продукции» не будет. То есть вариант «на сколько сжали, на столько же и расширили» (все равно как в автомобильном амортизаторе) нам не подходит. Поэтому для сохранения нужной нам работоспособности газ перед расширением или во время него нужно еще и нагревать, а перед сжатием неплохо бы охладить. В итоге за счет предварительного нагрева энергия расширения значительно повысится и сразу появится ее излишек, который можно использовать для получения необходимой нам механической работы. Вот собственно и весь принцип. На его основе и работает турбореактивный двигатель.
Таким образом любой тепловой двигатель должен иметь устройство для сжатия, нагреватель, устройство для расширения и неплохо бы холодильник. Все это есть у ТРД, соответственно: компрессор, камера сгорания, турбина, а в роли холодильника выступает атмосфера. Рабочее тело – воздух, который попадает в компрессор, там сжимается, далее идет в камеру сгорания, там нагревается, смешивается с продуктами сгорания ( керосина) и потом следует на турбину, вращая ее (а она, в свою очередь компрессор) и расширяясь, тем самым теряет часть энергии. И уже далее расходуется «полезная» энергия. Она превращается в кинетическую, когда газ сильно разгоняется в устройстве под названием реактивное сопло (которое обычно бывает сужающимся) и двигатель получает силу тяги за счет реакции струи. Все :-)… ТРД работает. Неплохо этот процесс показан в коротком ролике. Он без комментариев, но они здесь и не нужны :-). Скажу только, что показанное переднее колесо – это компрессор, далее кольцом вокруг вала – камера сгорания и за ней колесо турбины. Все схематично, но достаточно просто, чтобы понять как работает турбореактивный двигатель…
Более подробно об устройстве ТРД и его разновидностей мы поговорим в следующих статьях.
До встречи…
Р.S. Ролик рекомендую смотреть в большом формате.
Фотография кликабельна.
Устройство
Первый контур вмещает в себя компрессоры высокого и низкого давления, камеру сгорания, турбины высокого и низкого давления и сопло. Второй контур состоит из направляющего аппарата и сопла. Такая конструкция является базовой, но возможны и некоторые отклонения, например, потоки внутреннего и внешнего контура могут смешиваться и выходить через общее сопло, или же двигатель может оснащаться форсажной камерой.
Теперь коротко о каждом составляющем элементе ТРДД. Компрессор высокого давления (КВД) – это вал, на котором закреплены подвижные и неподвижные лопатки, формирующие ступень. Подвижные лопатки при вращении захватывают поток воздуха, сжимают его и направляют внутрь корпуса. Воздух попадает на неподвижные лопатки, тормозится и дополнительно сжимается, что повышает его давление и придает ему осевой вектор движения. Таких ступеней в компрессоре несколько, а от их количества напрямую зависит степень сжатия двигателя. Такая же конструкция и у компрессора низкого давления (КНД), который расположен перед КВД. Отличие между ними заключается только в размерах: у КНД лопатки имеют больший диаметр, перекрывающий собой сечение и первого и второго контура, и меньшее количество ступеней ( от 1 до 5).
В камере сгорания сжатый и нагретый воздух перемешивается с топливом, которое впрыскивается форсунками, а полученный топливный заряд воспламеняется и сгорает, образуя газы с большим количеством энергии. Камера сгорания может быть одна, кольцевая, или же выполняться из нескольких труб.
Турбина по своей конструкции напоминает осевой компрессор: те же неподвижные и подвижные лопатки на валу, только их последовательность изменена. Сначала расширенные газы попадают на неподвижные лопатки, выравнивающие их движение, а потом на подвижные, которые вращают вал турбины. В ТРДД турбин две: одна приводит в движение компрессор высокого давления, а вторая – компрессор низкого давления. Работают они независимо и между собой механически не связаны. Вал привода КНД обычно расположен внутри вала привода КВД.
Сопло – это сужающаяся труба, через которую выходят наружу отработанные газы в виде реактивного потока. Обычно каждый контур имеет свое сопло, но бывает и так, что реактивные потоки на выходе попадают в общую камеру смешения.
Внешний, или второй, контур – это полая кольцевая конструкция с направляющим аппаратом, через которую проходит воздух, предварительно сжатый компрессором низкого давления, минуя камеру сгорания и турбины. Этот поток воздуха, попадая на неподвижные лопасти направляющего аппарата, выравнивается и движется к соплу, создавая дополнительную тягу за счет одного только сжатия КНД без сжигания топлива.
Форсажная камера – это труба, размещенная между турбиной низкого давления и соплом. Внутри у нее установлены завихрители и топливные форсунки с воспламенителями. Форсажная камера дает возможность создания дополнительной тяги за счет сжигания топлива не в камере сгорания, а на выходе турбины. Отработанные газы после прохождения ТНД и ТВД имеют высокую температуру и давления, а также значительное количество несгоревшего кислорода, поступившего из второго контура. Через форсунки, установленные в камере, подается топливо, которое смешивается с газами, и воспламеняется. В результате тяга на выходе возрастает порой в два раза, правда, и расход топлива при этом тоже растет. ТРДД, оснащенные форсажной камерой, легко узнать по пламени, которое вырывается из их сопла во время полета или при запуске.
форсажная камера в разрезе, на рисунке видны завихрители.
Самым важным параметром ТРДД является степень двухконтурности (к) – отношение количества воздуха, прошедшего через второй контур, к количеству воздуха, прошедшего через первый. Чем выше этот показатель, тем более экономичным будет двигатель. В зависимости от степени двухконтурности можно выделить основные виды двухконтурных турбореактивных двигателей. Если его значение к<2, это обычный ТРДД, если же к>2, то такие двигатели называются турбовентиляторными (ТВРД). Есть также турбовинтовентиляторные моторы, у которых значение достигает и 50-ти, и даже больше.
В зависимости от типа отведения отработанных газов различают ТРДД без смешения потоков и с ним. В первом случае каждый контур имеет свое сопло, во втором газы на выходе попадают в общую камеру смешения и только потом выходят наружу, образуя реактивную тягу. Двигатели со смешением потоков, которые устанавливаются на сверхзвуковые самолеты, могут снабжаться форсажной камерой, которая позволяет увеличивать мощность тяги даже на сверхзвуковых скоростях, когда тяга второго контура практически не играет роли.
Принцип работы турбовентиляторного двигателя
Турбовентиляторный двигатель технологически очень сложное изделие, но работающее по довольно простому и понятному принципу. Расскажем, о его устройстве и какие процессы и как в нём протекают. Сначала разберёмся с терминами. Слово турбовентиляторный произошло от английского turbofan, причём англоязычный мир имеет под словом turbofan абсолютно любой двухконтурный турбореактивный двигатель.
При этом они разделяют их с низкой и высокой степенью двухконтурности соответственно, а степень двухконтурности – это параметр, который показывает отношение расхода массы воздуха через внешний контур к расходу во внутреннем. Итак, неотъемлемое свойство турбовентиляторного двигателя высокая степень двухконтурности – для современных изделий от 4 и выше.
Чтобы как можно больше воздуха расходовать через внешний контур используется вентилятор большого диаметра, энергия для его вращения появляется за счёт работы внутреннего контура и в этом заключается суть работы турбовентиляторного двигателя, где с помощью вентилятора создаётся около 80% всей тяги.
Рассмотрим типичное устройство и как это работает. Турбовентиляторный двигатель имеет внешний и внутренний контуры. На входе в двигатель имеется вентилятор большого диаметра, который подаёт воздух в оба контура, устройство внутреннего контура подобно обычному турбореактивному двигателю, который состоит из компрессора, турбины, камеры сгорания и реактивного сопла.
Сначала воздух, немного увеличив давление, после вентилятора попадает в компрессор низкого давления, затем он попадает в компрессор высокого давления, который вращается в несколько раз быстрее. После прохождения обоих компрессоров, воздух, сжатый более чем в 30 раз и сильно нагретый от высокого давления попадает в камеру сгорания. Здесь он смешивается с топливом, которое подаётся с помощью форсунок и поджигается. Далее раскалённый газ с температурой около 1600 градусов и выше начинает совершать полезную работу.
Сначала он попадает в турбину высокого давления, которая заставляет вращаться, находящийся с ней на одном валу компрессор высокого давления. Затем, потратив часть энергии и снизив свою температуру, раскаленный газ попадает в турбину низкого давления, которая находится на одном валу с компрессором и вентилятором. Потеряв большую часть энергии, раскалённый газ попадает в сопло и совершает последнее полезное действие – создаёт реактивную тягу. Таков принцип работы внутреннего контура, который создаёт лишь 20% всей тяги вентиляторного двигателя.
Принцип работы внешнего контура. Турбина низкого давления, находящаяся на одном валу с вентилятором, заставляет его вращаться, воздух, пройдя через лопатки вентилятора и немного увеличив своё давление, проходит через спрямляющий аппарат, его неподвижные лопатки поворачивают поток воздуха в осевом направлении, заодно повышая его давление. Затем воздушный поток попадает в сопло, где создаётся реактивная тяга.
Вот и весь принцип работы вентиляторного двигателя. Разумеется, каждый конкретный двигатель имеет свои особенности и различия, больше всего они касаются устройства внутреннего контура, но схема исполнения всегда остаётся плюс минус одинаковой. Обычно разница заключается в количестве ступеней компрессора и турбины, также помимо двухвальной схемы используется и трёхвальная, когда вентилятор и компрессор низкого давления больше не связаны, в таком случае используется промежуточная турбина, которая вращает только компрессор низкого давления на отдельном валу.
Ещё один способ увеличения эффективности конструкции – это установка редуктора на валу, который соединяет турбину низкого давления и вентилятор, такое решение позволяет им работать на оптимальных для себя режимах. Устройство внешнего контура также может иметь заметные отличия. При относительно небольшой степени двухконтурности в двигателе может использоваться смешение потоков, где газ из обоих контуров попадает в единую камеру сгорания и покидает через общее сопло.
Но, такая схема не подходит для более габаритных двигателей с высокой степенью двухконтурности, так как масса двигателя значительно вырастет, поэтому практически во всех вентиляторных двигателях потоки не смешиваются и длина внешнего контура всегда меньше внутреннего. Вот собственно и всё – таков принцип и способы повышения эффективности работы турбовентиляторного двигателя.
Источник
Примечания
- Соболев Д. А. История самолётов. Начальный период.. — М.: РОССПЭН, 1995. — 343 с.
- Выпускавшийся серийно в Германии (1944—1945гг) ПуВРД Argus As-014 ракеты Фау-1 работал на частоте пульсаций около 45гц
- ПуВРД Argus As-014 также мог работать в этом режиме, но развиваемая им при этом тяга была слишком мала, чтобы разогнать ракету Фау-1, поэтому она стартовала с катапульты, сообщавшей ей скорость, при которой двигатель становился эффективным.
- ↑ Олег Макаров. Огненный пульс // Популярная механика. — 2017. — № 11. — С. 122-126.
- Что касается получившего широкую известность боевого применения самолёта-снаряда Фау-1, оборудованного ПуВРД, нужно отметить, что даже по меркам периода Второй мировой войны он уже не отвечал требованиям к такому оружию по скорости: более половины этих снарядов уничтожались средствами ПВО того времени, главным образом, самолётами-истребителями с поршневыми двигателями, и своим умеренным успехом Фау-1 был обязан низкому уровню развития в то время средств заблаговременного обнаружения воздушных целей.
- Рольф Вилле «Постройка летающих моделей-копий», перевод с немецкого В. Н. Пальянова, Издательство ДОСААФ СССР, Москва 1986 (Rolf Wille «Flufahige, vorbildgetrene Nachbauten», Transpress VEB Verlag fur Verkehrswessen), ББК 75.725, глава 9 «Размещение двигателя на модели» страницы 114-118
Гербы и эмблемы Вооружённых СилПарашютно-десантные, десантно-штурмовые полки
Шаг 5: Привариваем торцевые кольца
Для начала нужно укоротить корпус до нужной длины и выровнять всё должным образом.
Начнём с того, что обмотаем большой лист ватмана вокруг стальной трубы так, чтобы концы сошлись друг с другом и бумага была сильно натянута. Из него сформируем цилиндр. Наденьте ватман на один конец трубы так, чтобы края трубы и цилиндра из ватмана заходили заподлицо. Убедитесь, что там будет достаточно места (чтобы сделать отметку вокруг трубы), так чтобы вы могли сточить металл заподлицо с отметкой. Это поможет выровнять один конец трубы.
Далее следует измерить точные размеры камеры сгорания и рассеивателя. С колец, которые будут приварены, обязательно вычтите 12 мм. Так как КС будет в длину 25 см, учитывать стоит 24,13 см. Поставьте отметку на трубе, и воспользуйтесь ватманом, чтобы изготовить хороший шаблон вокруг трубы, как делали раньше.
Отрежем лишнее с помощью болгарки. Не волнуйтесь о точности разреза. На самом деле, вы должны оставить немного материала и очистить его позже.
Сделаем скос с обеих концов трубы(чтобы получить хорошее качество сварного шва). Воспользуемся магнитными сварочными зажимами, чтобы отцентровать кольца на концах трубы и убедиться, что они находятся на одном уровне с трубой. Прихватите кольца с 4-х сторон, и дайте им остыть. Сделайте сварной шов, затем повторите операции с другой стороны. Не перегревайте металл, так вы сможете избежать деформации кольца.
Когда оба кольца приварены, обработайте швы. Это необязательно, но это сделает КС более эстетичной.
Oписание гиперзвукового ПВРД
Верхний предел скорости гиперзвукового ПВРД (ГПВРД) без использования дополнительного окислителя оценивается в М12—24. Исследования в рамках проекта Rockwell X-30 в 1980-х годах установили верхнее значение скорости для работы ГПВРД, соответствующим М17 в связи с обеспечением условий для сгорания в двигателе. Для сравнения, самый быстрый пилотируемый самолёт со сверхзвуковыми комбинированными турбопрямоточными воздушно-реактивными двигателями Lockheed SR-71 «Blackbird» компании Lockheed достигает скорости не выше М3,4. В отличие от ракетного двигателя, ГПВРД использует не окислитель, транспортируемый вместе с аппаратом, а атмосферный воздух, поэтому он теоретически обладает гораздо более высоким показателем эффективности двигателя — удельным импульсом по сравнению с большинством существующих ракетных двигателей.
Так же как и сверхзвуковой ПВРД, гиперзвуковой ПВРД состоит из имеющего сужение воздуховода — воздухозаборника, в котором поступающий в него со скоростью полёта летательного аппарата (ЛА) воздух тормозится и сжимается, камеры сгорания, где происходит сжигание топлива, сопла, через которое происходит истечение газообразных продуктов сгорания топлива со скоростью, бо́льшей скорости полета, что и создаёт тягу двигателя. Как и сверхзвуковой ПВРД, гиперзвуковой ПВРД имеет мало движущихся частей или не имеет их вовсе. В частности, в нём отсутствуют компрессор и турбина, которые присутствует в (ТРД) и являются самыми дорогостоящими частями такого двигателя, являясь при этом потенциальным источником проблем в процессе эксплуатации.
Для работы гиперзвуковой ПВРД нуждается в проходящем сквозь него сверхзвуковом воздушном потоке. Поэтому подобно сверхзвуковому ПВРД, гиперзвуковой ПВРД имеет минимальную скорость, при которой он может функционировать, примерно равную М7—8. Таким образом, аппарат с гиперзвуковым ПВРД нуждается в другом способе разгона до скорости, достаточной для работы гиперзвукового ПВРД. Гибридный сверхзвуковой/гиперзвуковой ПВРД может иметь ме́ньшее значение минимальной рабочей скорости, и некоторые источники указывают, что экспериментальный гиперзвуковой самолёт Boeing X-43 имеет именно такой двигатель. Последние испытания X-43 производились с помощью ракетного ускорителя, запускаемого с самолёта-носителя и разгоняющего этот аппарат до скорости 7,8М.
Для гиперзвуковых аппаратов характерны проблемы, связанные с их весом и конструктивной и эксплуатационной сложностью. Перспективность гиперзвуковых ПВРД активно обсуждается в основном по той причине, что многие параметры, которые в конечном итоге определят эффективность самолёта с таким двигателем, остаются неопределёнными. Это, в частности, также связано со значительными затратами на испытания таких летательных аппаратов. Такие хорошо финансируемые проекты, как X-30, были приостановлены или закрыты до создания экспериментальных моделей.
Спусковой механизм
Конструкция
Конструктивно ПВРД имеет предельно простое устройство. Двигатель состоит из камеры сгорания, в которую из диффузора поступает воздух, а из топливных форсунок — горючее. Заканчивается камера сгорания входом в сопло, как правило, суживающееся-расширяющееся.
С развитием технологии смесевого твёрдого топлива, оно стало применяться в ПВРД. Топливная шашка с продольным центральным каналом размещается в камере сгорания. Рабочее тело, проходя по каналу, постепенно окисляет топливо с его поверхности, и нагревается само. Использование твёрдого топлива ещё более упрощает конструкцию ПВРД: ненужной становится топливная система. Состав смесевого топлива для ПВРД отличается от используемого в ракетных твердотопливных двигателях. Если для последних большую часть топлива составляет окислитель, то для ПВРД он добавляется лишь в небольшом количестве для активизации процесса горения. Основную часть наполнителя смесевого топлива ПВРД составляет мелкодисперсный порошок алюминия, магния или бериллия, теплота окисления которых значительно превосходит теплоту сгорания углеводородных горючих. Примером твердотопливного ПВРД может служить маршевый двигатель противокорабельной крылатой ракеты П-270 «Москит».
В зависимости от скорости полёта ПВРД подразделяются на дозвуковые, сверхзвуковые и гиперзвуковые. Это разделение обусловлено конструктивными особенностями каждой из этих групп.
Акционеры
История создания
Первые официально зарегистрированные разработки ПуВРД относятся ко второй половине XIX века. В 60-е годы сразу двое изобретателей независимо друг от друга сумели получить патенты на новый тип двигателя. Имена этих изобретателей – Телешов Н.А. и Шарль де Луврье
В то время их разработки не нашли широкого применения, но уже в начале ХХ века, когда для самолетов подыскивали замену поршневым двигателям, на ПуВРД обратили внимание немецкие конструкторы. Во время Второй мировой войны немцы активно использовали самолет-снаряд ФАУ-1, оснащенный ПуВРД, что объяснялось простотой конструкции этого силового агрегата и его дешевизной, хотя по своим рабочим характеристикам он уступал даже поршневым двигателям
Это был первый и единственный раз в истории, когда этот тип двигателя использовался в массовом производстве самолетов.
Фау-1
После окончания войны ПуВРД остались «в военном деле», где нашли применение в качестве силового агрегата для ракет типа «воздух-поверхность» КБ Южное . Но и здесь со временем они утратили свои позиции из-за ограничения по скорости, необходимости первоначального разгона и низкой эффективности. Примерами использования ПуВРД являются ракеты Fi-103, 10Х, 14Х, 16Х, JB-2. В последние годы наблюдается возобновление интереса к этим двигателям, появляются новые разработки, направленные на его усовершенствование, так что, возможно, в скором будущем ПуВРД вновь станет востребованным в военной авиации. На данный момент пульсирующий воздушно-реактивный двигатель возвращают к жизни в области моделирования, благодаря использованию в исполнении современных конструкционных материалов.
Современное исполнение ПуВРД
Определение пригодности водоема
Галерея
См. также
Устройство ПВРД
Конструкция ПВРД, как было отмечено выше, отличается лаконичностью и минимальным количеством составляющих элементов. В упрощенном варианте он состоит из диффузора, камеры сгорания и сопла, а также вспомогательных систем подачи топлива и зажигания, которые в некоторых моделях могут и отсутствовать. На первый взгляд может показаться, что собрать такой двигатель можно и самостоятельно, ведь в нем нет ничего сложного, но на самом деле это не совсем так. Эффективность работы ПВРД зависит от множества мелких нюансов, в том числе и от формы, геометрии и размеров диффузора и сопла. Эти параметры определяют тип ПВРД, его мощность и сферу применения.