Реактивный двигатель: современные варианты исполнения

Содержание:

Жидкостный реактивный двигатель

Тот, кто стрелял из огнестрельного оружия или просто наблюдал этот процесс со стороны, знает, что существует сила, которая непременно оттолкнет ствол назад. Причем при большем количестве заряда отдача непременно увеличивается. Так же работает и реактивный двигатель. Принцип работы его схож с тем, как происходит отталкивание ствола назад под действием струи раскаленных газов.

Что касается ракеты, то в ней процесс, во время которого происходит воспламенение смеси, является постепенным и непрерывным. Это самый простой, твердотопливный двигатель. Он хорошо знаком всем ракетомоделистам.

В жидкостном реактивном двигателе (ЖРД) для создания рабочего тела или толкающей струи применяется смесь, состоящая из топлива и окислителя. Последним, как правило, выступает азотная кислота или жидкий кислород. Топливом в ЖРД служит керосин.

Принцип работы реактивного двигателя, который был в первых образцах, сохранен и до настоящего времени. Только теперь в нем используется жидкий водород. При окислении этого вещества удельный импульс увеличивается по сравнению с первыми ЖРД сразу на 30%. Стоит сказать о том, что идея применения водорода была предложена самим Циолковским. Однако существующие на тот момент трудности работы с этим чрезвычайно взрывоопасным веществом были просто непреодолимы.

Каков принцип работы реактивного двигателя? Топливо и окислитель попадают в рабочую камеру из отдельных баков. Далее происходит превращение компонентов в смесь. Она сгорает, выделяя при этом колоссальное количество тепла под давлением в десятки атмосфер.

Компоненты в рабочую камеру реактивного двигателя попадают по-разному. Окислитель вводится сюда напрямую. А вот топливо проходит более длинный путь между стенками камеры и сопла. Здесь оно разогревается и, уже имея высокую температуру, вбрасывается в зону горения через многочисленные форсунки. Далее струя, сформированная соплом, вырывается наружу и обеспечивает летательному аппарату толкающий момент. Вот так можно рассказать, какой имеет реактивный двигатель принцип работы (кратко). В данном описании не упоминаются многие компоненты, без которых работа ЖРД была бы невозможной. Среди них компрессоры, необходимые для создания нужного для впрыска давления, клапана, питающие турбины и т. д.

Ссылки

Приморский

Многие интересуются: в средней полосе как растет кизил? Фото, которые размещают опытные садоводы Подмосковья, к примеру, свидетельствуют, что растения прекрасно развиваются и плодоносят

Важно лишь правильно выбрать сорт

Прекрасно зарекомендовал себя в этих регионах зимостойкий кизил Приморский. Деревце прекрасно переносит зимы средней полосы, каждый год, одаривая своих владельцев вкусными и полезными плодами. Это среднеспелый сорт – первые ягоды можно попробовать уже в конце июля. Как правило, они одинакового размера, да и созревают очень дружно.

Вначале они окрашены в насыщенный красный цвет. А со временем становятся практически черными, что является особенностью этого сорта.

Принцип работы турбовентиляторного двигателя

Турбовентиляторный двигатель технологически очень сложное изделие, но работающее по довольно простому и понятному принципу. Расскажем, о его устройстве и какие процессы и как в нём протекают. Сначала разберёмся с терминами. Слово турбовентиляторный произошло от английского turbofan, причём англоязычный мир имеет под словом turbofan абсолютно любой двухконтурный турбореактивный двигатель.

При этом они разделяют их с низкой и высокой степенью двухконтурности соответственно, а степень двухконтурности – это параметр, который показывает отношение расхода массы воздуха через внешний контур к расходу во внутреннем. Итак, неотъемлемое свойство турбовентиляторного двигателя высокая степень двухконтурности – для современных изделий от 4 и выше.

Чтобы как можно больше воздуха расходовать через внешний контур используется вентилятор большого диаметра, энергия для его вращения появляется за счёт работы внутреннего контура и в этом заключается суть работы турбовентиляторного двигателя, где с помощью вентилятора создаётся около 80% всей тяги.

Рассмотрим типичное устройство и как это работает. Турбовентиляторный двигатель имеет внешний и внутренний контуры. На входе в двигатель имеется вентилятор большого диаметра, который подаёт воздух в оба контура, устройство внутреннего контура подобно обычному турбореактивному двигателю, который состоит из компрессора, турбины, камеры сгорания и реактивного сопла.

Сначала воздух, немного увеличив давление, после вентилятора попадает в компрессор низкого давления, затем он попадает в компрессор высокого давления, который вращается в несколько раз быстрее. После прохождения обоих компрессоров, воздух, сжатый более чем в 30 раз и сильно нагретый от высокого давления попадает в камеру сгорания. Здесь он смешивается с топливом, которое подаётся с помощью форсунок и поджигается. Далее раскалённый газ с температурой около 1600 градусов и выше начинает совершать полезную работу.

Сначала он попадает в турбину высокого давления, которая заставляет вращаться, находящийся с ней на одном валу компрессор высокого давления. Затем, потратив часть энергии и снизив свою температуру, раскаленный газ попадает в турбину низкого давления, которая находится на одном валу с компрессором и вентилятором. Потеряв большую часть энергии, раскалённый газ попадает в сопло и совершает последнее полезное действие – создаёт реактивную тягу. Таков принцип работы внутреннего контура, который создаёт лишь 20% всей тяги вентиляторного двигателя.

Принцип работы внешнего контура. Турбина низкого давления, находящаяся на одном валу с вентилятором, заставляет его вращаться, воздух, пройдя через лопатки вентилятора и немного увеличив своё давление, проходит через спрямляющий аппарат, его неподвижные лопатки поворачивают поток воздуха в осевом направлении, заодно повышая его давление. Затем воздушный поток попадает в сопло, где создаётся реактивная тяга.

Вот и весь принцип работы вентиляторного двигателя. Разумеется, каждый конкретный двигатель имеет свои особенности и различия, больше всего они касаются устройства внутреннего контура, но схема исполнения всегда остаётся плюс минус одинаковой. Обычно разница заключается в количестве ступеней компрессора и турбины, также помимо двухвальной схемы используется и трёхвальная, когда вентилятор и компрессор низкого давления больше не связаны, в таком случае используется промежуточная турбина, которая вращает только компрессор низкого давления на отдельном валу.

Ещё один способ увеличения эффективности конструкции – это установка редуктора на валу, который соединяет турбину низкого давления и вентилятор, такое решение позволяет им работать на оптимальных для себя режимах. Устройство внешнего контура также может иметь заметные отличия. При относительно небольшой степени двухконтурности в двигателе может использоваться смешение потоков, где газ из обоих контуров попадает в единую камеру сгорания и покидает через общее сопло.

Но, такая схема не подходит для более габаритных двигателей с высокой степенью двухконтурности, так как масса двигателя значительно вырастет, поэтому практически во всех вентиляторных двигателях потоки не смешиваются и длина внешнего контура всегда меньше внутреннего. Вот собственно и всё – таков принцип и способы повышения эффективности работы турбовентиляторного двигателя.

Источник

Биологическая разведка

Как действует реактивная сила?

Чтобы понять принцип работы реактивного двигателя, нужно понимать, как действует эта сила.

Итак, представим выстрел из любого огнестрельного оружия. Это наглядный пример действия реактивной силы. Струя раскаленного газа, который образовался в процессе сгорания заряда в патроне, отталкивает оружие назад. Чем мощнее заряд, тем сильнее будет отдача.

А теперь представим процесс зажигания горючей смеси: он проходит постепенно и непрерывно. Именно так выглядит принцип работы прямоточного реактивного двигателя. Подобным образом работает ракета с твердотопливным реактивным двигателем – это наиболее простая из его вариаций. С ней знакомы даже начинающие ракетомоделисты.

В качестве горючего для реактивных двигателей вначале применяли дымный порох. Реактивные двигатели, принцип работы которых был уже более совершенен, требовали топлива с основой из нитроцеллюлозы, которая растворялась в нитроглицерине. В больших агрегатах, запускающих ракеты, выводящие шаттлы на орбиту, сегодня используют специальную смесь полимерного горючего с перхлоратом аммония в качестве окислителя.

Прямоточные воздушно-реактивные двигатели

Эта разновидность двигателей функционирует таким образом, что не нуждается в подвижных деталях. Воздушные массы нагнетаются в камеру сгорания непринужденным путем, благодаря торможению потоков об обтекатели входных отверстий. В дальнейшем совершается все то же, что и в обыкновенных реактивных двигателях, а именно воздушные потоки смешиваются с топливом и выходят как реактивные струи из сопел. Прямоточные воздушно-реактивные двигатели применяются в поездах, в воздушных суднах, в «беспилотниках», в ракетах, кроме того они могут устанавливаться на велосипеды или скутеры.

Источник

Как работает реактивный двигатель

Воздух из окружающего пространства поступает на всас вентиляторов, которые подают его далее лопатки вращающегося с очень высокой скоростью турбокомпрессора. При этом поступающий воздух выполняет 2 функции:

  • окислитель для сгорания топлива;
  • охладитель агрегата.

В лопаточном аппарате турбокомпрессора воздух крепко уплотняется и под высоким давлением (от 3 МПа) подается в топливную смесительную камеру реактивного двигателя. Из рисунка 3 видно, что камера сгорания устроена таким образом, что смешение воздуха производится в несколько ступеней — на входе и в самой камере. Сюда же подводится топливо.

Хорошо перемешанная и в достаточном количестве обогащенная смесь воспламеняется, и в результате сгорания образуется тепловая энергия с выделением огромного объема газов. Последние приводят во вращение турбину горячей части двигателя, привод которой служит приводом турбокомпрессора.

В отдельных моделях реактивных двигателей турбины на выходе не монтируются. По большей части данное исполнение применяется в конструкции и принципе работы ракетного двигателя, где продукты сгорания после камеры попадают на выходные сопла.

Покидая горячую ступень, газы во всех реактивных аппаратах проходят через сопла. Эти элементы отличаются по своим конструкциям для разных моделей реактивных агрегатов и представляют собой «трубу», которая сначала сужается, а к выходу газов увеличивается в диаметре. За счет такой конструкции отработавшие газы увеличивают свою скорость до сверхзвука и образуют реактивную силу.

Температура горения в «сердце» реактивного агрегата достигает 2500°С, поэтому конструктивно требовательны в постоянстве охлаждения.

Турбокомпрессор

Принцип работы турбокомпрессора сводится к следующему:

  • при попадании в мотор топливовоздушной смеси происходит ее сгорание, которая затем выходит через выхлопную трубу. В начале выпускного коллектора установлена крыльчатка, крепко соединенная с другой крыльчаткой, расположенной во впускном коллекторе;
  • поток выходящих из двигателя выхлопных газов раскручивает крыльчатку, находящуюся в выпускном коллекторе, которая в свою очередь приводит в движение крыльчатку, установленную на впуске;
  • в мотор поступает большее количество воздушной массы, в него подается больше топлива. 

Automatic Vertical Navigation

I’ve seen a lot of wiki pages on aircraft autopilot and always noticed that next to ‘VNAV -‘ the author writes either he doesn’t know what it is, or it doesn’t do anything or he hasn’t tested it yet. Well, for a change, here I’m telling you what the VNAV does.

We have designed the autopilot route manager in the CDU to be able to accept VNAV altitudes for each (or whichever you want) waypoint. On the Dialog Route Manager, enter your waypoint in the format ‘’ for example, ‘’. So let’s say you have different altitudes according to your SID/STAR/IAP till cruise altitude and then different altitudes for your waypoints when you land. Let’s assume your flight plan to be: DEP, , , , , WP5, WP6, WP7, WP8, WP9, WP10, , , , , DEST

You doesn’t have to enter altitudes for WP5 to WP10 because you’ll start cruising at WP5 (say you want to cruise FL360 aka. 36000 ft) and stay at 36000 ft till WP10. That means WP11 will be your ‘End Cruise’ Waypoint, where you aim at when you’re out of the cruise.

To set cruise settings, go to the CDU’s ‘VNAV’ page and enter cruise altitude in the respective area. Then enter your cruise start altitude (in this case, WP5) and cruise end altitude (in this case, WP11) in their respective places (there’re labels).

Once you’re ready, finish other checklists, take off and turn on ‘LNAV’ and ‘VNAV’ on the Autopilot. The VNAV is designed to automatically calculate the required/ideal climb/descent rate to get to your waypoint just in time. Out of all the tests we’ve conducted, the VNAV is VERY accurate at the moment.

Государственное устройство Бразилии

Согласно Конституции 1988 года, Бразилия – это федеративная республика. Ее глава — Президент, которого избирают на 4 года. Исполнительная власть принадлежит Президенту, Вице-президенту и Кабинету министров в составе 15 министров с председателем.

Двухпалатный бразильский парламент называется Национальный Конгресс, он состоит из Сената (81 сенаторов) и Палаты депутатов (513 депутатов).

Основные политические партии – «Партия трудящихся», «Партия бразильского демократического движения», «Бразильская социал-демократическая партия», «Демократическая партия», «Прогрессистская партия» и «Партия республики».

Административно страна делится на 26 штатов и один федеральный округ с центром в Бразилиа.

[править] История

Электрореактивный двигатель в Политехническом музее, Москва. Создан в 1971 году в институте атомной энергии им. И. В. Курчатова

В 1964 в системе ориентации советских КА «Зонд-2» в течение 70 минут функционировали 6 эрозионных импульсных РД, работавших на фторопласте; получаемые плазменные сгустки имели температуру ~ 30 000 К и истекали со скоростью до 16 км/с (конденсаторная батарея имела ёмкость 100 мкф, рабочее напряжение составляло ~ 1 кВ). В США подобные испытания проводились в 1968 на КА «ЛЭС-6». В 1961 пинчевый импульсный РД американской фирмы «Рипаблик авиэйшен» (англ. Republic Aviation) развил на стенде тягу 45 мН при скорости истечения 10—70 км/с.

1 октября 1966 года трёхступенчатой геофизической ракетой 1Я2ТА была запущена на высоту 400 км автоматическая ионосферная лаборатория «Янтарь-1» для исследования взаимодействия реактивной струи электрического ракетного двигателя (ЭРД), работавшего на аргоне, с ионосферной плазмой. Экспериментальный плазменно-ионный ЭРД был впервые включён на высоте 160 км, и в течение дальнейшего полёта было проведено 11 циклов его работы. Была достигнута скорость истечения реактивной струи около 40 км/сек. Лаборатория «Янтарь» достигла заданной высоты полёта 400 км, полёт продолжался 10 минут, ЭРД работал устойчиво и развил проектную тягу в пять грамм. О достижении советской науки научная общественность узнала из сообщения ТАСС.

Во второй серии экспериментов использовали азот. Скорость истечения была доведена до 120 км/сек. В — запущено четыре подобных аппарата (по другим данным до 70 года и шесть аппаратов).

Осенью 1970 года успешно выдержал испытания в реальном полёте прямоточный воздушный ЭРД. В октябре 1970 года на XXI конгрессе Международной астрономической федерации советские учёные — профессор Георгий Львович Гродзовский, кандидаты технических наук Ю. Данилов и Н. Кравцов, кандидаты физико-математических наук М. Маров и В. Никитин, доктор технических наук В. Уткин — доложили об испытаниях двигательной установки, работающей на воздухе. Зарегистрированная скорость реактивной струи достигла 140 км/с.

В 1971 в системе коррекции советского метеорологического спутника «Метеор» работали два стационарных плазменных двигателя разработки Института атомной энергии им. И. В. Курчатова и ОКБ Факел, каждый из которых при мощности электропитания ~ 0,4 кВт развивал тягу 18—23 мН и скорость истечения свыше 8 км/с. РД имели размер 108×114×190 мм, массу 32,5 кг и запас РТ (сжатый ксенон) 2,4 кг. Во время одного из включений один из двигателей проработал непрерывно 140 ч. Эта электрореактивная двигательная установка изображена на рисунке.

Также электроракетные двигатели используются в миссии Dawn. Планируется использование в проекте BepiColombo.

Ракетные двигатели: от китайских фейерверков до космических кораблей

Полеты в космос – без сомнения, одно из самых потрясающих достижений нашей цивилизации. Знаменитое гагаринское «поехали!» и первый шаг Армстронга по лунной поверхности – исторические вехи на пути к далеким планетам и другим звёздным системам. Ничего бы этого не было без ракетного двигателя, который позволил нам преодолеть силу гравитации планеты и дал возможность выйти на околоземную орбиту.

Устройство ракетного двигателя, с одной стороны, настолько незамысловато, что вы можете построить его дома самостоятельно, потратив на это буквально три копейки. Но, с другой стороны, конструкция космических и военных ракет до такой степени сложна, что только несколько государств в мире имеют технологии их изготовления.

Ракетный двигатель (РД) – это разновидность реактивного двигателя, рабочее тело и источник энергии которого находится непосредственно на борту летательного аппарата. Это его главное отличие от воздушно-реактивных двигателей. Таким образом, РД не зависит от кислорода атмосферы и поэтому может использоваться для полетов в космическом (безвоздушном) пространстве.

В настоящее время наиболее распространены так называемые химические ракетные двигатели, в которых удельный импульс образуется за счет сгорания топлива. Кроме них, существуют также ядерные и электрические двигатели. В этой статье мы расскажем о том, как работает ракетный двигатель, поведаем о его преимуществах и недостатках, а также представим современную классификацию РД.

Таможенные ограничения

Электрические ракетные двигатели (ЭРД)

Еще один потенциальный конкурент химических РД – электрический РД, работающий за счет электрической энергии. ЭРД может быть электротермическим, электростатическим, электромагнитным или импульсным.

История создания

Первый ЭРД был сконструирован в 30-х годах советским конструктором В.П. Глушко, хотя идея создания такого двигателя появилась еще в начале ХХ века. В 60-х годах ученые СССР и США активно работали над созданием ЭРД, и уже в 70-х годах первые образцы начали использоваться в космических аппаратах в качестве двигателей управления.

Устройство и принцип работы

Электроракетная двигательная установка состоит из самого ЭРД, строение которого зависит от его типа, систем подачи рабочего тела, управления и электропитания. Электротермический РД нагревает поток рабочего тела за счет тепла, выделяемого нагревательным элементом, или в электрической дуге. В качестве рабочего тела используется гелий, аммиак, гидразин, азот и другие инертные газы, реже – водород.

Электростатические РД делятся на коллоидные, ионные и плазменные. В них заряженные частицы рабочего тела ускоряются за счет электрического поля. В коллоидных или ионных РД ионизация газа обеспечивается ионизатором, высокочастотным электрическим полем или газоразрядной камерой. В плазменных РД рабочее тело – инертный газ ксенон – проходит через кольцевой анод и попадает в газоразрядную камеру с катод-компенсатором. При высоком напряжении между анодом и катодом вспыхивает искра, ионизирующая газ, в результате чего получается плазма. Положительно заряженные ионы выходят через сопло с большой скоростью, приобретенной за счет разгона электрическим полем, а электроны выводятся наружу катодом-компенсатором.

Электромагнитные РД имеют свое магнитное поле – внешнее или внутреннее, которое ускоряет заряженные частицы рабочего тела.

Импульсные РД работают за счет испарения твердого топлива под действием электрических разрядов.

Среди преимуществ ЭРД:

  • высокий показатель удельного импульса, верхний предел которого практически не ограничен;
  • малый расход топлива (рабочего тела).

Недостатки:

  • высокий уровень потребления электроэнергии;
  • сложность конструкции;
  • небольшая тяга.

На сегодняшний день использование ЭРД ограничено их установкой на космические спутники, а в качестве источников электроэнергии для них применяются солнечные батареи. Вместе с тем именно эти двигатели могут стать теми силовыми установками, которые дадут возможность исследовать космос, поэтому работы по созданию их новых моделей активно ведутся во многих странах. Именно эти силовые установки чаще всего упоминали фантасты в своих произведениях, посвященных покорению космоса, их же можно встретить и в научно-фантастических фильмах. Пока именно ЭРД является надеждой на то, что люди все же смогут путешествовать к звездам.

Совместимое снаряжение

Будущее ракетных двигателей

Мы привыкли видеть химические ракетные двигатели, которые сжигают топливо для производства тяги. Но есть масса других способов для получения тяги. Любая система, которая способна толкать массу. Если вы хотите ускорить бейсбольный мячик до невероятной скорости, вам нужен жизнеспособный ракетный двигатель. Единственная проблема при таком подходе — это выхлоп, который будет тянуться через пространство. Именно эта небольшая проблема приводит к тому, что ракетные инженеры предпочитают газы горящим продуктам.

Многие ракетные двигатели крайне малы. К примеру, двигатели ориентации на спутниках вообще не создают большую тягу. Иногда на спутниках практически не используется топливо — газообразный азот под давлением выбрасывается из резервуара через сопло.

Новые конструкции должны найти способ ускорить ионы или атомные частицы до высокой скорости, чтобы сделать тягу более эффективной. А пока будем пытаться делать электромагнитные двигатели и ждать, что там еще выкинет Элон Маск со своим SpaceX.

Источник

Ядерные ракетные двигатели (ЯРД)

Этот тип РД в отличие от химических вырабатывает энергию не при сгорании топлива, а в результате нагревания рабочего тела энергией ядерных реакций. ЯРД бывают изотопными, термоядерными и ядерными.

История создания

Конструкция и принцип работы ЯРД были разработаны еще в 50-хх годах. Уже в 70-хх годах в СССР и США были готовы экспериментальные образцы, которые успешно проходили испытания. Твердофазный советский двигатель РД-0410 с тягой в 3,6 тонны испытывался на стендовой базе, а американский реактор «NERVA» должен был устанавливаться на ракету «Сатурн V» до того, как спонсирование лунной программы было остановлено. Параллельно велись работы и над созданием газофазных ЯРД. Сейчас действуют научные программы по разработке ядерных РД, проводятся эксперименты на космических станциях.

Таким образом, действующие модели ядерных ракетных двигателей уже есть, но пока ни один из них так и не был задействован вне лабораторий или научных баз. Потенциал таких двигателей довольно высокий, но и риск, связанный с их использованием, тоже немалый, так что пока они существуют только в проектах.

Устройство и принцип действия

Ядерные ракетные двигатели бывают газо-, жидко- и твердофазными в зависимости от агрегатного состояния ядерного топлива. Топливо в твердофазных ЯРД – это ТВЭЛы, такие же, как в ядерных реакторах. Они находятся в корпусе двигателя и в процессе распада делящегося вещества выделяют тепловую энергию. Рабочее тело – газообразный водород или аммиак – контактируя с ТВЭЛом, поглощает энергию и нагревается, увеличиваясь в объеме и сжимаясь, после чего выходит через сопло под высоким давлением.

Принцип работы жидкофазного ЯРД и его устройство аналогично твердофазным, только топливо находится в жидком состоянии, что позволяет увеличить температуру, а значит и тягу.

Газофазные ЯРД работают на топливе в газообразном состоянии. Обычно в них используется уран. Газообразное топливо может удерживаться в корпусе электрическим полем или же находится в герметичной прозрачной колбе – ядерной лампе. В первом случае возникает контакт рабочего тела с топливом, а также частичная утечка последнего, поэтому кроме основной массы топлива в двигателе должен быть предусмотрен его запас для периодического пополнения. В случае с ядерной лампой утечки не происходит, а топливо полностью изолировано от потока рабочего тела.

Преимущества и недостатки ЯРД

Ядерные ракетные двигатели имеют огромное преимущество в сравнении с химическими – это высокий показатель удельного импульса. Для твердофазных моделей его величина составляет 8000-9000 м/с, для жидкофазных – 14000 м/с, для газофазных – 30000 м/с. Вместе с тем, их использование влечет за собой заражение атмосферы радиоактивными выбросами. Сейчас ведутся работы по созданию безопасного, экологичного и эффективного ядерного двигателя, и главным «претендентом» на эту роль является газофазный ЯРД с ядерной лампой, где радиоактивное вещество находится в герметичной колбе и не выходит наружу с реактивным пламенем.

Электроракетный двигатель, сущность, устройство, принцип работы:

Электрический ракетный двигатель (электроракетный двигатель, ЭРД) – ракетный двигатель, принцип работы которого основан на преобразовании электрической энергии в направленную кинетическую энергию частиц. В таких двигателях в качестве источника энергии для создания тяги используется электрическая энергия бортовой энергоустановки космического аппарата.

По физике процессов электрический ракетный двигатель отличается от других разновидностей ракетных двигателей – от жидкостных и твердотопливных. Последние два используют химическую энергию.

Как и в обычном химическом ракетном двигателе в ЭРД также присутствует рабочее тело, которым выступает, как правило, газ (аргон, ксенон, аммиак, азот, гидразин и т.п.), иногда – жидкость, смеси жидкости и газа, жидкие металлы, пары металлов и твердые вещества (например, фторопласт), а также их смеси. Рабочее тело также истекает из сопла двигателя и создает тягу. В отличие от химического ракетного двигателя скорость истечения потока рабочего тела в ЭРД имеет высокое значение и составляет от 3 км/с и более. При этом верхняя граница скорости истечения частиц газа или другого рабочего тела неограниченна и по предварительным оценкам составляет порядка 210 км/с. Электрическая мощность ЭРД колеблется от сотен ватт до мегаватт. В настоящее время для электрических ракетных двигателей различных типов характерны следующие скорости истечения рабочего тела – от 10 до 60 км/с, электрическая мощность – от 0,8 до 7 КВт. КПД таких двигателей составляет порядка от 30 до 60%. Сам газ – рабочее тело (если в качестве рабочего тела используется газ) хранится в жидком виде.

В отличии от химическим двигателей электрические ракетные двигатели имеют исключительно высокий удельный импульс, составляющий до 100 км/с и более. Однако большой потребный расход энергии (1-100 кВт/Н тяги) и малое отношение тяги к площади поперечного сечения реактивной струи (не более 100 кН/м2) ограничивают максимальную целесообразную тягу ЭРД несколькими десятками ньютон. Недостатком электрических ракетных двигателей также является малое ускорение космического аппарата, которое составляет десятые или даже сотые доли ускорения свободного падения (g), что ограничивает применение таких двигателей только космическим пространством. Поэтому для запуска космического аппарата с Земли к другим планетам необходимо комбинировать обычные химические ракетные двигатели с электрическими.

Для ЭРД характерны малые размеры – порядка 0,1 м и более, а также масса порядка нескольких кг.

От космолетов к космическим автомобилям

Мы рассмотрели три линии по созданию метановых космических ракет будущего, две из которых осуществляются уже сейчас, а третья — Союз-СПГ намечена для разработки в 20-е годы.

Будущее российского проекта зависит от многих факторов. Его размерность, выбранная по принципу «design to cost» попадает в наиболее востребованную нишу на рынке пусковых услуг, а полноценная многоразовость первой ступени придает суперконкурентные свойства. К сожалению, именно эта суперконкурентность делает Союз-СПГ весьма нежелательным гостем на мировом и внутреннем рынке. Судьба подобных проектов бывает очень непростой.

Не следует думать и о том, что у американских проектов все «долларом намазано». Свои специфические проблемы есть и в «системном» проекте Blue Origin, и во внесистемном проекте SpaceX. Тем не менее, ралли метановых проектов близится к своему завершению и неизбежному переформатированию работы космической отрасли — которое можно отсрочить в интересах отставших от жизни участников рынка, но нельзя отменить.

Заявленные характеристики метановых ракетных двигателей и будущих метановых ракет собраны нами в сводных таблицах.

Метановые РД

проектные
характеристики
РД-0162 BE-4 Raptor
масса 2100 кг 1500 кг
земная тяга 204 тс 250 тс 204-250 тс
УИ земной 321 c 330 с
высотный 356 c 380 с
давление в КС 169 атм 132 атм 296 атм
кратность использования 25 25 50

Метановые РН

РН Союз-СПГ Vulcan
Centaur
New
Glenn
Super Heavy
Starship
1 ступень
число и
тип РД
5 РД-
0169А
2
BE-4
7
BE-4
31
Raptor
тяга 500 тс 500 тс 1750 тс 7428 тс
масса конструкции 25.4 т 280 т
масса топлива 220 т 3400 т
КС 8.66 12.14
2 ступень
число и
тип РД
1 РД-
0169B
2
RL-10
2
BE-3U
3+3V
Raptor
тяга 95 тс 21.6 тс 144.8 тс 1225 тс
масса конструкции 5.5 т 120 т
масса топлива 77 т 1200 т
КС 14 10
характеристики РH
стартовая масса 359.4 т 226.3 т 5000 т
длина 48.8 м 61.2 м 98 м 120 м
диаметр 4.1 м 5.4 м 7 м 9 м
ПН на НОО 12.5 т 10.6 т 45 т 100 т

В будущем автомобильная и космическая техника будут работать на одном и том же топливе — СПГ. Здесь сходятся воедино требования экологической чистоты и экономической эффективности. Вероятно, что многоразовые метановые ракеты проторят дорогу для создания частной космической техники. Например, Starship по своей грузоподъемности можно считать огромным космическим «БелАЗом», только без колес. Есть проекты куда меньшего масштабы, например, Крыло-СВ с крыльями и колесами для посадки на аэродром. Еще больше могут походить на автомобили лунные лэндеры-квадроциклы, о которых мы тоже напишем.

В общем, Маск недаром запустил свою «Теслу» к орбите Марсу. Шальная выхода миллиардера является намеком о том, куда движется мир. Вслед за нынешними летающими автомобилями когда-нибудь появятся — космические автомобили, как практичная техника для полетов в космос.

Сокращения:
РН — ракета-носитель
РД — ракетный двигатель
УИ – удельный импульс
ПН — полезная нагрузка
КС — конструктивное совершенство
ТНА — турбонасосный агрегат
ДОГГ — дожигание окислительного генераторного газа
ТТУ — твердотопливный ускоритель

С другими статьями Автомалиновки по освоению космоса можно познакомиться здесь:Беспилотный космический грузовик от ГРЦ Макеева — проект КОРОНААвтомобили будущего сегодня и какими они будут: электромобиль-планетоходАмериканское прошлое и российское будущее космодрома «Морской старт»Космические гонки XX и XXI века, часть 1: полет ГагаринаКосмические гонки XX и XXI века, часть 2: несбывшаяся мечта КоролеваКосмические гонки XX и XXI века, часть 3: лунные автоматы СССРКосмические гонки XX и XXI века, часть 4: лунные экспедиции АмерикиКосмические гонки XX и XXI века, часть 5: время крылатых гигантовКосмические гонки XX и XXI века, часть 6: возвращение на ЛунуКосмические гонки XX и XXI века, часть 7: сверхтяжелые ракеты РоссииКосмические гонки XX и XXI века, часть 8: частный космос Илона Маска

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector