Кумулятивные боеприпасы. история создания и принцип действия

Цены ГАЗ-33081 на российском рынке

Стоимость нового полноприводного грузовика ГАЗ-33081 у дилеров Горьковского автозавода начинается с полутора миллионов рублей (за базовую комплектацию – бортовой автомобиль с тентом). На вторичном рынке предложений немного, и цена колеблется от 400 тысяч рублей до 1 миллиона, в зависимости от технического состояния автомашины.

Вахтовый автобус ГАЗ-33081.

В целом, нужно отметить, что ГАЗ-33081 был просто обречён на успех в нашей стране, где тысячи квадратных километров занимают просторы бездорожья и есть насущная необходимость в применении реальных вездеходных качеств техники.

Дизельный полноприводной «Садко» стал хорошим преемником грузовика ГАЗ-66, унаследовав лучшие качества простоты, неприхотливости, проходимости данной машины и избавившись от присущих ей недостатков.

Деталировка стандартного кумулятивного снаряда

Кумулятивный снаряд состоит из:

  • Взрывателя и головки;
  • выемки и кольца;
  • заряда и детонатора;
  • фиксатора и трассера;
  • стабилизатора, корпуса, лопасти.

Понятие кумулятивного эффекта

Эффект изобретённый Бересковым, означает мгновенное усиление происходящих процессов, за счёт слаженности совместных усилий.

В одной из частей заряда изготавливают небольшое углубление, которое покрывается слоем металла общей толщиной в 1-3 мм. Это углубление всегда повернуто к цели.

Взрыв, происходящий на краю воронки, заставляет взрывную волну проходить по боковым стенкам, тем самым сплющивая их к оси снаряда. Во время взрыва создаётся большое давление, которое трансмутирует облицовку воронки в квазижидкость , затем перемещает её вдоль оси боеприпаса. Эти действия образуют струю, которая развивает скорость до (10км/с).

ВАЖНО! Облицовка не расплавляется, а деформируется в жидкость под воздействием высокого давления на неё. Если кумулятивная струя попала в цель, то прочность брони не имеет значения. Важна лишь плотность и толщина металла

Пробивная способность струи металла зависит от:

Важна лишь плотность и толщина металла. Пробивная способность струи металла зависит от:

Если кумулятивная струя попала в цель, то прочность брони не имеет значения. Важна лишь плотность и толщина металла. Пробивная способность струи металла зависит от:

  • длины;
  • плотности облицовки;
  • материала брони цели.

ВАЖНО! Максимально эффективное действие (фокусное), возникает при взрыве снаряда на небольшом расстоянии от бронированной цели. Броня и кумулятивный заряд взаимодействуют между собой, т.е.  созданное от взрыва составных частей снаряда давление настолько высокое, что самая крепкая броня, поведёт себя словно жидкость

Стандартный боеприпас пробивает броню толщиной от 5 до 8 его калибров

Броня и кумулятивный заряд взаимодействуют между собой, т.е.  созданное от взрыва составных частей снаряда давление настолько высокое, что самая крепкая броня, поведёт себя словно жидкость. Стандартный боеприпас пробивает броню толщиной от 5 до 8 его калибров.

Обратите внимание! Если облицовка воронки выполнена из обеднённого урана, бронебойность снаряда повышается до 10 калибров. Плюсы и минусы

Плюсы и минусы

У кумулятивных боеприпасов, есть положительные и отрицательные стороны. Абсолютные плюсы таких снарядов:

  • Пробивание почти любого слоя брони;
  • Струя пробивает броню независимо от изначальной скорости полёта снаряда;
  • Мощное действие после попадание в цель.

Но и у кумулятивных боеприпасов есть свои минусы:

  1. Трудности в массовом производстве, из-за сложности конструкции;
  2. Большие сложности в применении боеприпасов РСЗО;
  3. Уязвимости в пробитии динамической брони.

Боевая часть с кумулятивным эффектом, используется при производстве боеприпасов для РПГ, противотанковых пушек и мин. При попадании в цель снаряда, начиненного «жидким металлом», в большой вероятности произведёт взрыв боекомплекта. При этом экипаж погибнет.

Интересный факт! Современные ПТРК способны пробить броневой лист толщиной 10 см.

Технические характеристики подводных лодок проекта 995 «Борей»

Ниже приведены характеристики кораблей проекта «Борей».

Основные характеристики
Тип корабля РПКСН
Обозначение проекта 955 «Борей»
Разработчик проекта ЦКБ «Рубин»
Классификация НАТО Borei
Скорость (надводная) 15 узлов
Скорость (подводная) 29 узлов
Рабочая глубина погружения 400 м
Предельная глубина погружения 480 м
Автономность плавания 90 суток
Экипаж 107 человек, в том числе 55 офицеров
Размеры
Водоизмещение надводное 14 720 т
Водоизмещение подводное 24 000 т
Длина наибольшая 170 м
Ширина корпуса наиб. 13,5 м
Средняя осадка 10 м
Силовая установка
  • ОК-650В 190 МВтПТУ с ГТЗА
  • гребной вал
  • водометный движитель
Вооружение
Торпедно-минное вооружение 8 ТА: 4 x 650 мм, 4 x 533 мм,торпеды, торпедоракеты, крылатые ракеты.
Ракетное вооружение 16 ПУ БРПЛ Р-30 «Булава»

Недавно один из руководителей знаменитого ЦКБ «Рубин» сообщил, что специалисты предприятия в 2020 году приступят к разработке подводной лодки следующего, пятого поколения. Это будет АПЛ совсем другого класса. Хотя ранее главнокомандующий военно-морских сил России заявлял, что постройка подводных кораблей следующего поколения начнется в России не ранее 2030 года.

Разновидности ПБ снарядов

В настоящее время разработано несколько эффективных конструкций подкалиберных снарядов, которые используются вооруженными силами различных стран. В частности, речь идет о следующем:

  • С неотделяющимся поддоном. Весь путь до цели снаряд проходит как единое целое. В пробитии же участвует только сердечник. Такое решение не получило достаточного распространения по причине повышенного аэродинамического сопротивления. В результате чего показатель бронепробития и точности с расстоянием до цели существенно падает.
  • С неотделяющимся поддоном для конического орудия. Суть такого решения в том, что при прохождении по коническому стволу поддон сминается. Это позволяет уменьшить аэродинамическое сопротивление.
  • Подкалиберный снаряд с отделяющимся поддоном. Суть в том, что поддон срывается силами воздуха или же центробежными силами (при нарезном орудии). Это позволяет существенно снизить сопротивление воздуха в полете.

Полезное видео

Взрыватель

Долгое время единственным используемым взрывателем являлся ударный взрыватель , срабатывавший при попадании снаряда в цель.

Ударные взрыватели наиболее просты и надёжны. Большинство взрывателей этого типа возможно выставить на контактный или замедленный режим. В первом случае взрыв происходит при первом касании о препятствие и предназначен для поражения объектов вокруг преграды. Во втором случае снаряд заглубляется в цель и только там происходит детонация – это позволяет эффективно разрушать фортификационные сооружения и здания.

При прямом попадании в уязвимые зоны (люки башни, радиатор моторного отделения, вышибные экраны кормовой боеукладки и т. д.) ОФС может вывести современный танк из строя. Также ударной волной и осколками, с большой долей вероятности, выводятся из строя приборы наблюдения, связи, вынесенное за броневой объём вооружение, прочие комплексы, устанавливаемые в большом количестве на современную бронетехнику.

Люди, которые следят за лентой новостей, довольно часто слышат в описании чрезвычайных событий и происшествий такие слова, как фугас, мина фугасного или осколочно -фугасного действия. Сегодня в эпоху расцвета террористической угрозы, что такое фугас знают не только взрослые, но дети. Фугасная мина стала излюбленным орудием террористов, посредством которого можно держать в страхе население городов, нанося болезненные удары по объектам социально-общественной инфраструктуры. Хотя еще буквально каких-то лет 20 назад подобная терминология была уделом военных и в большинстве случаев о фугасах мы слышали только в сводках из зоны военных конфликтов.

Несмотря на то, что тактика ведения боевых действий претерпела существенные изменения, фугасы продолжают использоваться, как средство сдерживания наступления противника. Артиллерия всех калибров массово используют боеприпасы осколочного действия. На оснащении танковых подразделений и сил ПТО продолжают оставаться бронебойно-фугасные боеприпасы.

Трудное положение на Восточном фронте

Следует отметить и тот факт, что в начале войны немцам было крайне затруднительно бороться с советской бронетехникой. Все средние, и тем более тяжелые танки, состоявшие на вооружении Красной Армии, имели надежное противоснарядное бронирование, к тому же наклонное. Калибра башенных орудий, если они были (а Т-1, например, вооружался только пулеметом), не хватало, чтобы поразить Т-34 или КВ. С нашими танками могла бороться только штурмовая авиация, полевая или зенитная артиллерия, стреляющая, как правило, болванками. Эффективность применения возрастала, если заряд был кумулятивный. Подкалиберный снаряд также обладал сильной бронебойностью, но он в производстве оказался слишком сложным и требовал высоких затрат, а Германии, воевавшей кроме Восточного фронта и на море, и в Африке, приходилось экономить.

DámskýDeník

Заправочные емкости

Заправочные емкости автомобиля довольно велики, и это обосновано мощностью двигателя и его предназначением:

  • бачок для заливки омывающей жидкости – 2,2 л;
  • сцепление (гидропривод) – 0,4 л;
  • тормозная жидкость – 1 л;
  • система ГУР – 3,2 л;
  • количество масла в амортизаторе (верно для любого) – 0,45 л;
  • коробка передач (масло) – 5,1 л;
  • задний мост (масло) – 3,3 л;
  • емкость системы охлаждения (для полного заполнения) – 16 л;
  • смазка двигателя и радиатора (суммарное количество) – 11,5 л;
  • емкость топливного бака – 125 л.

В нашей статье можно разобраться с техническими характеристиками КамАЗа-53215, а также узнать, какое оборудование можно устанавливать на его шасси.

Смертельная воронка

Как работает кумулятивный эффект? Идея очень проста. В головной части боеприпаса имеется выемка в виде облицованной миллиметровым (или около того) слоем металла воронки с острым углом при вершине (раструбом к мишени). Детонация взрывчатого вещества начинается со стороны, ближайшей к вершине воронки. Детонационная волна «схлопывает» воронку к оси снаряда, а поскольку давление продуктов взрыва (почти полмиллиона атмосфер) превышает предел пластической деформации обкладки, последняя начинает вести себя как квазижидкость. Такой процесс не имеет ничего общего с плавлением, это именно «холодное» течение материала. Из схлопывающейся воронки выдавливается очень быстрая кумулятивная струя, а остальная часть (пест) летит от точки взрыва медленнее. Распределение энергии между струей и пестом зависит от угла при вершине воронки: при угле меньше 90 градусов энергия струи выше, при угле больше 90 градусов выше энергия песта. Разумеется, это очень упрощенное объяснение — механизм формирования струи зависит от применяемого взрывчатого вещества (ВВ), от формы и толщины обкладки.

Ударное ядро Одна из разновидностей кумулятивного эффекта. Для образования ударного ядра кумулятивная выемка имеет тупой угол при вершине (или сферическую форму). При воздействии детонационной волны за счет формы и переменной толщины стенок (к краю толще) происходит не «схлопывание» облицовки, а ее выворачивание «наизнанку». Полученный снаряд диаметром в четверть и длиной в один калибр (первоначальный диаметр выемки) разгоняется до 2,5 км/с. Бронепробитие ядра меньше, чем у кумулятивной струи, но зато сохраняется на протяжении почти тысячи диаметров выемки. В отличие от кумулятивной струи, которая «отнимает» у песта лишь 15% его массы, ударное ядро образуется из всей облицовки.

При схлопывании воронки тонкая (сравнимая с толщиной оболочки) струя разгоняется до скоростей порядка скорости детонации ВВ (а иногда и выше), то есть около 10 км/с и более. Эта струя не прожигает броню, а проникает в нее, подобно тому как струя воды под давлением размывает песок. Однако в процессе формирования струи разные ее части приобретают разную скорость (задние — меньшую), поэтому далеко кумулятивная струя полететь не может — она начинает растягиваться и распадаться, теряя способность к бронепробитию. Максимальный эффект действия струи достигается на некотором расстоянии от заряда (его называют фокусным). Конструктивно оптимальный режим бронепробития обеспечивается промежутком между выемкой в заряде и головкой снаряда.

Истоки изобретения и дальнейшее развитие эффекта

Когда произошло Что произошло
1864 г. Открытие М. Бересковым кумулятивного эффекта.
1910 г. – 1926 г. Множественные исследования различными странами, для создания кумулятивных боеприпасов и их испытание в условиях военного времени
1935 г. В Германии создаются первые образцы кумулятивных снарядов.
1940 г. Использование кумулятивных боеприпасов армией Вермахта. Открытие производств по их созданию в США.
1942 г. Советский Союз начинает массовое производство снарядов для применения в артиллерийских дивизиях.
1950 г. Военные инженеры США создают первый в мире снаряд с высоким уровнем стабилизации и начало исследований по его усовершенствованию.
1960 г. Первичные испытания разработанных в СССР сбалансированных снарядов с кумулятивным эффектом.
1990 г. Создание военными инженерами СССР первых в мире боеприпасов тандемного вида, которые способны пробивать броню до 8 см.

1864 год, стал настоящим прорывом мастера минного дела Михаила Матвеевича Берескова, который открыл кумулятивный эффект. После воплощения задумки в жизнь, начались множественные испытания для проверки эффективности против твёрдых и бронированных объектов. Военное руководство многих стран, привело в шок, с какой эффективностью кумулятивные снаряды уничтожают бронированную технику. Подобные испытания заставили учёных со всего мира начинать исследования разработки М. Берескова.

В период с 1910 по 1926 гг. активно продолжались исследования военными инженерами Великобритании, США, России, Германии, Турции, Франции, по созданию разнотипных мин и снарядов с кумулятивным действием. Главной целью всех разработок являлось найти наиболее подходящую форму и материал, которые смогли бы уничтожать тяжелобронированные объекты.

В 1935 году, немецкие инженеры начали создавать снаряды с кумулятивным зарядом для артиллерийских полков, которые активно их использовали в ходе 1941-1944 годов. Благодаря увиденному потенциалу немецких снарядов против советской техники, Советский Союз взяв за основу немецкие образцы, начал производство аналогичных боеприпасов.

В 1942 году Советский Союз сумел начать массовое производство снарядов, которые могли бы использоваться в артиллерийских орудиях.

Кумулятивные боеприпасы в послевоенное время

В июле 1950 года, американские военные инженеры изобрели абсолютно новую модель снаряда, с высокой стабильностью во время полёта и уникальной облицовкой.

В 1960 году был создан снаряд, имевший улучшенную структуру, и был сделан из материалов, которые полностью превосходили своих предшественников. В этом же году были начаты множественные исследования по усовершенствованию уже готовых разработок.

1990 год — Создание первых в мире боеприпасов тандемного вида, которые способны пробивать броню до 8 см.

О кумулятивах

Впервые подобные боеприпасы были использованы нацистской Германией в 1941 году. Тогда в СССР не ожидали использования подобных снарядов, так как их принцип действия хоть и был известным, но на вооружении их еще не было. Ключевой особенностью подобных снарядов было то, что они обладали высокой бронепробиваемостью за счет наличия взрывателей мгновенного действия и кумулятивной выемкой. Проблема, с которой столкнулись впервые, заключалась в том, что снаряд по время полета вращался. Это приводило к рассеиванию кумулятивной стрелы и, как следствие, пониженной бронепробиваемости. Чтобы исключить негативный эффект, было предложено применять гладкоствольные пушки.

История службы

Дональд Кук, один из первых производит запуск крылатых ракет Tomahawk, по Ираку

Участвовали в нанесении ракетных ударов по Ираку с первого дня операции,операция «Свобода Ираку» 2003 году.
В настоящее время эсминец «Дональд Кук» активно эксплуатируются в ходе дальних океанских походов и ежегодных учений ВМС США, а также в службе в Персидском заливе.

Пуск 324 мм. торпеды ТА Mk. 32

08 апреля 2014 года «Donald Cook» был направлен в Черное море. Как было сообщено, чтобы продемонстрировать поддержку союзникам Восточной Европы из-за событий на Украине, которые обеспокоены тем, что Россия наращивает свои войска на границах с Украиной.

10 апреля 2014 года, пройдя через турецкие проливы, эсминец вошел в Черное море. 12 апреля 2014 года над ракетным эсминцем 12 раз пролетел российский бомбардировщик СУ-24, который не был вооружен. 14 апреля 2014 года ракетный эсминец зашел в порт Констанца, Румыния, где его посетил президент Румынии Траян Бэсеску.

17 апреля 2014 года ракетный эсминец закончил визит в Румынию и покинул румынский порт. В настоящее время он находится в международных водах Черного моря. 24 апреля 2014 года покинул Черное море и взял курс на Средиземное море.

26 июня 2014 года прибыл в Дуррес, Албания. 07 декабря прибыл с визитом в порт Хайфа, Израиль.

Стрельбы с 127 мм. АУ Mark 45. Mod. 3/54 кал.

26 декабря 2014 года во второй раз вошел в акваторию Черного моря. 28 декабря «Donald Cook» принял участие в совместных упражнениях с военно-морскими силами Турции, в которых принял участие фрегат TCG «Fatih» (F-242) класса «Yavuv» ВМС Турции. 30 декабря ракетный эсминец прибыл с визитом в порт Констанца, Румыния.

8 января 2015 года прибыл с визитом в порт Варна, Болгария. 11 января провел совместные учения с фрегатом «Гетман Сагайдачный» (U130) ВМС Украины. 14 января покинул акваторию Черного моря. 26 февраля провел совместные учения в Средиземном море с легким фрегатом FS «La Fayette» (F-710) ВМС Франции.

Где используется

Собственно сам кумулятивный эффект наблюдали, наверное, все без исключения люди. Возникает он, к примеру, при падении капли в воду. В этом случае на поверхности последней образуются воронка и тонкая струя, направленная вверх.

Использоваться кумулятивный эффект может, к примеру, в исследовательских целях. Создавая его искусственно, ученые ищут пути достижения высоких скоростей веществ — до 90 км/с. Также этот эффект используется в промышленности — в основном в горных разработках. Но наибольшее применение он, конечно же, нашел в военном деле. Боеприпасы, работающие на таком принципе, используются разными странами с начала прошлого века.

Механизм действия

Основная статья: кумулятивный эффект

При достижении цели взрыватель создаёт детонационную волну, которая, проходя через отверстие в защитном экране, инициирует подрыв детонатора основного заряда. Взрывная волна распространяется по основному заряду с высокой (3-5 км/с) скоростью и образовавшаяся ударная волна сжимает кумулятивную воронку. Так как скорость движения при этом превышает скорость звука в металле, то он в воронке ведёт себя как идеальная жидкость. При этом выделяется большой по массе (около 90 % изначальной массы) медленно двигающийся «пест» и гиперзвуковая кумулятивная струя металла. Скорость движения струи также превышает скорость звука в металле, поэтому струя взаимодействует с бронёй как две идеальные жидкости (по гидродинамическим законам). Прочность брони в традиционном понимании при этом практически не играет роли и снаряд обеспечивает огромную (до 10 калибров) бронепробиваемость.

Оставшаяся энергия после образования кумулятивной струи идёт на разрушение корпуса и преобразуется в энергию разлёта осколков.

Эффект кумуляции

Был необходим другой путь развития, и он нашелся. Выходом из сложившегося положения стало создание снаряда, использующего для пробития брони эффект кумуляции (усиленное в заданном направлении действие взрыва). Кумулятивный эффект был известен еще в конце Xlll века, но применение нашел в XX веке.

Первый кумулятивный снаряд разработал немецкий инженер Франц Томанек в 1938 году. Сначала эффект направленного взрыва создавался путем использования специальной выемки конусообразной формы, которая изготавливалась в самом взрывчатом веществе, что снижало действие кумуляции.

Томанек предложил использовать облицовку выемки медью или другим прочным, но достаточно пластичным металлом, что сделало кумулятивный заряд наиболее эффективным.

В результате правильного выбора угла конуса облицовки, под воздействием взрыва металл образовывал кумулятивную струю, движущуюся со скоростью до 10 км в секунду.

О вооружении

Уничтожить цель экипаж данного самолета мог посредством бомб ФАБ-100. Всего на Ил-28 имелось 12 таких снарядов. Также бомбардировщик мог комплектоваться ФАБ-250М46 в количестве 8 штук, или двумя ФАБ-500М46, или же одной ФАБ-1500М46. Торпедоностные модели (Ил-28Т) комплектовались одной реактивной торпедой РАТ-52, минами АМД-100 и АМД-500 «Десна», «Лира». Для торпед использовали внешнюю подвеску, для мин и бомб – грузоотсеки. Позже Ил-28Т начали снаряжать двумя торпедами. Запуск торпед осуществлялся посредством прицелов ПТН-45. Чтобы его установить на самолет, советским авиастроителям пришлось немного изменить остекление в штурманской кабине. Стрелковое вооружение представлено двумя неподвижными пушками НР-23. Местом их установки стала носовая часть фюзеляжа. Для Ил-28Т и Ил-28Р было предусмотрено по одной пушке. Но одну стрелковую единицу полагалось 100 снарядов. Кроме того, самолет имел две кормовые пушки, управление которыми осуществлялось дистанционно при помощи гидравлического привода. Из одного ствола можно было выпустить 225 снарядов.

Преимущества и недостатки кумулятивных боеприпасов

Подобные боеприпасы имеют как сильные стороны, так и недостатки. К их несомненным достоинствам можно отнести следующее:

высокая бронебойность;
бронепробиваемость не зависит от скорости боеприпаса;
мощное заброневое действие.

У калиберных и подкалиберных снарядов бронепробиваемость напрямую связана с их скоростью, чем она выше, тем лучше. Именно поэтому для их применения используются артиллерийские системы. Для кумулятивных боеприпасов скорость не играет роли: кумулятивная струя образуется при любой скорости столкновения с мишенью. Поэтому кумулятивная боевая часть – идеальное средство для гранатометов, безоткатных орудий и противотанковых ракет, бомб и мин. Более того, слишком высокая скорость снаряда не дает образоваться кумулятивной струе.

Попадание кумулятивного снаряда или гранаты в танк часто приводит к взрыву боекомплекта машины и полностью выводит ее из строя. Экипаж при этом практически не имеет шансов на спасение.

Кумулятивные боеприпасы имеют весьма высокую бронебойность. Некоторые современные ПТРК пробивают гомогенную броню с толщиной более 1000 мм.

Недостатки кумулятивных боеприпасов:

довольно высокая сложность изготовления;
сложность применения для артиллерийских систем;
уязвимость перед динамической защитой.

Снаряды нарезных орудий стабилизируются в полёте за счет вращения. Однако центробежная сила, которая возникает при этом, разрушает кумулятивную струю. Придуманы разные «хитрости», для того чтобы обойти эту проблему. Например, в некоторых французских боеприпасах вращается только корпус снаряда, а его кумулятивная часть устанавливается на подшипниках и остается неподвижной. Но практически все решения этой проблемы значительно усложняют боеприпас.

Боеприпасы для гладкоствольных орудий, наоборот, имеют слишком высокую скорость, которая недостаточна для фокусирования кумулятивной струи.

Именно поэтому боеприпасы с кумулятивные боевые части более характерны для низкоскоростных или неподвижных боеприпасов (противотанковые мины).

Против подобных боеприпасов существует довольно простая защита – кумулятивная струя рассеивается с помощью небольшого контрвзрыва, который происходит на поверхности машины. Это так называемая динамическая защита, сегодня этот способ применяется очень широко.

Чтобы пробить динамическую защиту используется тандемная кумулятивная боевая часть, которая состоит из двух зарядов: первый устраняет динамическую защиту, а второй – пробивает основную броню.

Сегодня существуют кумулятивные боеприпасы с двумя и тремя зарядами.

Интересные факты

  • Первоначально кумулятивные снаряды назывались бронепрожигающими, так как считалось (исходя из формы пробитой воронки), что они именно прожигают броню. В реальности же при подрыве заряда температура облицовки достигает всего лишь 200—600 °C, что значительно ниже температуры её плавления.
  • Распространено мнение, что при попадании кумулятивной струи в танк или иную броневую цель находящиеся внутри погибают от баротравмы при резком повышении давления в замкнутом объеме после пробития брони, и это одна из причин, почему десант БМП предпочитает ездить снаружи, на верхнем листе, а не внутри машины, а также поэтому некоторые танкисты предпочитают езду с открытыми люками, для сброса давления. В реальности же всё наоборот: расширяющиеся газы сдетонировавшего кумулятивного заряда не могут проникнуть за пробитую броню в образовавшееся небольшое отверстие, а вот открытые люки приводят к «затеканию» ударной волны и поражению экипажа.

Конструкция

По конструкции кумулятивно-осколочный снаряд аналогичен кумулятивному снаряду за тем отличием, что используется более тяжёлый и твёрдый корпус.

Корпус кумулятивно-осколочного снаряда представляет собой металлический цилиндр из твёрдых сортов стали с хвостовиком, на котором расположено хвостовое оперение с механизмом раскрытия. На внутреннюю поверхность корпуса нанесены насечки, облегчающие его разрушение и создающие более однородное осколочное поле. В корпусе закреплена металлическая облицовка кумулятивной воронки. В вершине воронки находится детонатор — небольшое количество неустойчивого к детонации взрывчатого вещества. Оставшееся пространство между корпусом и кумулятивной воронкой заполнено высокобризантным взрывчатым веществом.

Передняя часть корпуса закрыта специальным металлическим защитным экраном, предохраняющим кумулятивную воронку от повреждений. В центре экрана расположено небольшое отверстие, предназначенное для прохода детонационной волны и кумулятивной струи. Над экраном находится баллистический обтекатель, на вершине которого закреплен контактный взрыватель. Обтекатель выполняет несколько функций: задаёт требуемое опережение подрыва основного заряда, что создаёт наилучшие возможности для формирования кумулятивной струи, улучшает аэродинамические характеристики снаряда и создаёт дополнительную защиту воронки.

Так как вращение снаряда приводит к преждевременному разрушению кумулятивной струи, то стабилизация в полёте осуществляется с помощью хвостового оперения, раскрывающегося в полёте. При этом в нарезных пушках для недопущения излишнего закручивания снаряда на него дополнительно надевают специальные скользящие поводки.

Механизм действия кумулятивного заряда[править | править код]

Кумулятивная струяправить | править код

После взрыва капсюля-детонатора заряда, возникает детонационная волна, которая перемещается вдоль оси заряда.

Волна, распространяясь к облицовке поверхности конуса, схлопывает её в радиальном направлении, при этом в результате соударения частей облицовки давление в ней резко возрастает. Давление продуктов взрыва, достигающее порядка 1010Па (105 кгс/см²), значительно превосходит предел текучести металла, поэтому движение металлической облицовки под действием продуктов взрыва подобно течению жидкости, которое, однако, обусловлено не плавлением, а пластической деформацией.

Аналогично жидкости, металл облицовки формирует две зоны: большой по массе (порядка 70—90 %) медленно двигающийся «пест» и меньшую по массе (порядка 10—30 %) тонкую (порядка толщины облицовки) гиперзвуковую металлическую струю, перемещающуюся вдоль оси симметрии заряда, скорость которой зависит от скорости детонации взрывчатого вещества и геометрии воронки. При использовании воронок с малыми углами при вершине возможно получить крайне высокие скорости, но при этом возрастают требования к качеству изготовления облицовки, так как повышается вероятность преждевременного разрушения струи. В современных боеприпасах используются воронки со сложной геометрией (экспоненциальные, ступенчатые и др.) с углами в диапазоне от 30 до 60°; скорость кумулятивной струи при этом достигает 10 км/с.

Процесс запрессовки медной облицовочной юбки, она же в виде готового изделия и внутри снаряженного боеприпаса в разрезе

Поскольку при встрече кумулятивной струи с бронёй развивается очень высокое давление, на один-два порядка превосходящее предел прочности металлов, то струя взаимодействует с бронёй в соответствии с законами гидродинамики, то есть при соударении они ведут себя как идеальные жидкости. Прочность брони в её традиционном понимании в этом случае практически не играет роли, а на первое место выходят показатели плотности и толщины бронирования.

Теоретическая пробивная способность кумулятивных снарядов пропорциональна длине кумулятивной струи и квадратному корню отношения плотности облицовки конуса (воронки) к плотности брони. Практическая глубина проникновения кумулятивной струи в монолитную броню у существующих боеприпасов варьируется в диапазоне от 1,5 до 4 калибров.

При схлопывании конической оболочки скорости отдельных частей струи оказываются различными, и струя в полёте растягивается. Поэтому небольшое увеличение промежутка между зарядом и мишенью увеличивает глубину пробивания за счёт удлинения струи. Однако при значительных расстояниях между зарядом и мишенью непрерывность струи нарушается, что снижает бронебойный эффект. Наибольший эффект достигается на так называемом «фокусном расстоянии», на котором струя максимально растянута, но ещё не разорвана на отдельные фрагменты. Для выдерживания этой дистанции используют различные типы наконечников соответствующей длины.

При перемещении в твёрдой среде градиентно разорванная кумулятивная струя самоцентрируется, а диаметр трека по мере удаления от точки фокуса уменьшается. При движении разорванной на фрагменты кумулятивной струи в жидкостях и газах каждый фрагмент перемещается по собственной траектории, а диаметр трека по мере удаления от точки фокуса увеличивается. Этим объясняется резкое снижение пробивной способности высокоградиентных кумулятивных струй при использовании противокумулятивных экранов.

Использование заряда с кумулятивной выемкой без металлической облицовки снижает кумулятивный эффект, так как вместо металлической струи действует струя газообразных продуктов взрыва; однако при этом достигается значительно более сильное заброневое действие.

Ударное ядроправить | править код

Основная статья: Ударное ядро

Ударное ядро — компактная металлическая форма, напоминающая пест, образующаяся в результате сжатия металлической облицовки кумулятивного заряда продуктами его детонации.

Для образования ударного ядра кумулятивная выемка имеет тупой угол при вершине или форму сферического сегмента переменной толщины (у краёв толще, чем в центре). Под влиянием ударной волны происходит не схлопывание конуса, а выворачивание его «наизнанку». Полученный снаряд диаметром в четверть и длиной в один калибр (первоначальный диаметр выемки) разгоняется до скорости 2,5 км/с. Бронебойное действие ядра ниже, чем у кумулятивной струи, но зато сохраняется на расстоянии до 1000 калибров. В отличие от кумулятивной струи, состоящей лишь из 15 % массы облицовки, ударное ядро образуется из 100 % её массы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector